Search for supersymmetry in compressed scenarios with the CMS detector

Denis Rathjens on behalf of the CMS collaboration

XXVIII International Conference on Sypersymmetry and Unification of Fundamental Interactions

August 25, 2021

2 Soft b-tag algorithm for compressed stop

3 Prompt soft lepton BDTs in EWKINO production

Introduction to compressed SUSY

- General feature: Small mass-gap between sparticles in decay chain
- Limited visible energy in the event for direct production
- \rightarrow Need ISR jet or VBF production to trigger such events
 - Identifying soft objects from the primary vertex reliably is experimental challenge

• soft final state objects from sparticle decays

Advances in compressed SUSY searches at CMS

• This talk covers examples of applying:

Soft b-tag algorithm

- CMS-SUS-20-002 Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at $\sqrt{s} = 13$ TeV
- CMS-SUS-19-010 Search for top squark production in fully-hadronic final states in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$

Non-prompt lepton rejection

- CMS-PAS-SUS-18-004 Search for physics beyond the standard model in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at 13 TeV
- CMS-SUS-19-012 Search for electroweak production of charginos and neutralinos in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$
- Among various improvements and optimizations

Introduction to compressed SUSY

2 Soft b-tag algorithm for compressed stop

3 Prompt soft lepton BDTs in EWKINO production

Stop search with 0, 1, or 2 leptons

CMS-SUS-20-002

- All simplified models assume 100% branching ratios
- Size of mass gap determines observed decay mode
- $\bullet\,$ Mass gap around and larger than standard model (SM) top mass $\rightarrow\,$ top decays
- \bullet Intermediate chargino mass \rightarrow bW production
- Chargino mass determines softness of b or W

Compressed stop selection

- 0 ℓ Large $p_{\mathrm{T}}^{\mathrm{miss}}$
- 1ℓ Non-b-tagged ISR jet and $p_{\mathrm{T}}^{\mathrm{miss}}$ close to lepton
- In case of $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \approx m_W$, require ≥ 1 soft b tag (first used in SUS-16-008)
 - Aimed at b-quarks with $\ensuremath{\rho_{\rm T}}\xspace < 25\,\mbox{GeV}$ not clustered into any jets
 - Efficiency $\approx 20\%$
 - $\bullet\,$ Misidentification rate <1%
- 2 ℓ not specifically sensitive to compressed scenarios

Combined 0-2 lepton top squark limits

- Combination of 183 exclusive signal regions (all-hadronic) and 39 exclusive signal regions (1ℓ) contribute most to compressed regions
- Main background is $t\bar{t}$ (> 95%)
- Selection with Deep Neural Network (DNN)
- DNN improvements least for degenerate case $\Delta m(ilde{ ext{t}}_1, \hat{\chi}_1^0) pprox m_{ ext{t}}$

Stop search all-hadronic with δm below W mass

CMS-SUS-19-010

- Models with even more compressed scenarios where $\Delta m(\tilde{t}_1, \tilde{\chi_1^0}) < m_{\rm W}$ lead to:
 - Virtual W decays (left)
 - Effective four-point interactions (middle, named "T2ttC")
 - Loop-induced flavour-changing neutral current charm production (right, named "T2cc")

• Still benefit from b- or c-tagging improvements and soft b tagging

All-hadronic selections with δm below W mass

- High p_{T} ISR jet required, $p_{\mathrm{T}}^{\mathrm{miss}}$ trigger
- $\bullet\,$ Many sensitive bins only accessible with soft b tag(s) (denoted as $\rm N_{SV})$

All-hadronic limits with δm below W mass

CMS-SUS-19-010

- Limits could be set down to extremely low $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \ge 10 \,\text{GeV}$ for top squark masses of at around 600 GeV
- Low $p_{\rm T}$ b-tagging, whether in jets or as standalone SVs is very useful in this regimen!

- Introduction to compressed SUSY
- 2 Soft b-tag algorithm for compressed stop
- 3 Prompt soft lepton BDTs in EWKINO production

2-4 (soft) leptons (and $au_{ m h}$) and large $p_{ m T}^{ m miss}$

CMS-PAS-SUS-18-004

CMS-SUS-19-012

- EWKINO production lends itself to looking at various multiplicites of soft leptons
- Subject to various backgrounds, depending on the bin definitions
- Troublesome source of soft leptons: non-prompt production from hadron decays

- Gradient boosted decision tree (BDT)
- Distinguishes prompt from nonpromt light leptons
- Uses properties of jet that contains the lepton

List of variables in BDT

- DeepFlavor b-tagging score
- ullet ratio of lepton to jet p_{T}
- jet momentum transverse to lepton momentum
- p_{T} , η , $I_{\mathrm{rel}}^{\mathrm{mini}}$, d_0 , d_z , $|d_{3D}|/\sigma(d_{3\mathrm{D}})$
- BDT output selection tightness varies with lepton category
- E.g. CMS-SUS-19-012 uses tighter criterium for 2 same-sign (SS) leptons than for \geq 3 leptons

CMS-PAS-SUS-18-004

CMS-SUS-19-012

- $\bullet~$ Left $2\ell~$ electroweak search region with $\ensuremath{p_{\mathrm{T}}^{\mathrm{miss}}}\xspace > 290\,\mbox{GeV}$
- Signal model is WZ production with $(m_{\rm NLSP}/\Delta m({\rm NLSP,LSP}))$
- Right 3ℓ search bins with decay chain containing staus $(m_{\tilde{\chi}^0_2}, m_{\tilde{\chi}^0_1})$
- Non-prompt leptons contribute large reducible backgrounds

Limits in compressed EWKINO and slepton sectors

- Some limit examples among various interpretations
- Non-prompt lepton suppression aids the exploration of compressed parameter space

- Presented some up-to-date analyses with the CMS detector exploring compressed SUSY scenarios
- Need energetic ISR or VBF jets to trigger
- Reconstruction of soft objects facilitates these challenging searches
- No hint of any kind of SUSY also in compressed scenarios, yet
- \bullet As always, more analyses with Run2 data still await \rightarrow we'll keep looking

Thank you for your attention!

- **(**) Aimed at b-quarks with $p_{\mathrm{T}} < 25\,\mathrm{GeV}$
- Secondary vertex (SV) reconstructed with inclusive vertex finder (IVF)
- SV and primary vertex (PV) within 3 cm in transverse plane
- > 2 tracks associated with SV
- Cosine of pointing angle defined by scalar product of $\overrightarrow{SV,PV}$ and \vec{p}_{SV} (total three-momentum of tracks associated with SV) direction > 0.98
- Distance ΔR of SV > 0.4 to any jets
- **③** Transverse component of $p_{\rm SV} < 25 \, {\rm GeV}$
- $\textcircled{0} \approx 20\% \text{ efficiency,} < 1\% \text{ misidentification of b hadrons}$

- training with **TENSORFLOW** using **KERAS** interface
- Final DNN structure sequential: 7 hidden layers with a RelU activation function (300,200, 100, 100, 100, 100, 10 neurons)
- Output 2 neurons with softmax normalization function
- Selected optimizer corresponds to Adam with learning rate of 0.0001%
- Out of 40% events used for DNN implementation, 60% used for training, 15% for validation, leftovers for guarding against overfitting

SUS-19-010 search bin definitions

Nj	$N_{\rm b}$	$N_{\rm SV}$	m _T ^b [GeV]	$p_{\rm T}^{\rm ISR}$ [GeV]	$p_{\rm T}^{\rm b}$ [GeV]	$p_{\rm T}^{\rm miss}$ [GeV]	Bin number
2–5	0	0		>500		[450, 550, 650, 750, ∞]	0–3
≥ 6	0	0		>500		$[450, 550, 650, 750, \infty]$	4–7
2–5	0	≥ 1		>500		$[450, 550, 650, 750, \infty]$	8-11
≥ 6	0	≥ 1		>500		$[450, 550, 650, 750, \infty]$	12-15
≥ 2	1	0	<175	300-500	20-40	[300, 400, 500, 600, ∞]	16-19
≥ 2	1	0	<175	300-500	40-70	[300, 400, 500, 600, ∞]	20-23
≥ 2	1	0	<175	>500	20-40	$[450, 550, 650, 750, \infty]$	24–27
≥ 2	1	0	<175	>500	40-70	$[450, 550, 650, 750, \infty]$	28-31
≥ 2	1	≥ 1	<175	>300	20-40	[300, 400, 500, ∞]	32–34
≥ 2	≥ 2	—	<175	300-500	40-80	[300, 400, 500, ∞]	35–37
≥ 2	≥ 2	—	<175	300-500	80-140	[300, 400, 500, ∞]	38-40
≥ 7	≥ 2		<175	300-500	>140	[300, 400, 500, ∞]	41-43
≥ 2	≥ 2		<175	>500	40-80	$[450, 550, 650, \infty]$	44-46
≥ 2	≥ 2	—	<175	>500	80-140	[450, 550, 650, ∞]	47–49
≥ 7	≥ 2	—	<175	>300	>140	[450, 550, 650, ∞]	50-52

• Search bin definitions specifically for compressed scenarios