Anapole Moment of Majorana Fermions and Implications for Direct Detection of Neutralino Dark Matter

> Merlin Reichard with A. Ibarra and R. Nagai (work in progress)

Technical University of Munich (TUM)

26.08.2021

Merlin Reichard (TUM)

Outline

Dark Matter

- Observational Evidence
- Direct Detection Experiments

Anapole Moment

- Effective Electromagnetic Interactions
- Anapole Dark Matter
- Model-Independent Results

Anapole Moment of the Lightest Neutralino

- Basics of the MSSM
- Anapole Moment of $\tilde{\chi}_1^0$ in SUGRA
- Anapole Moment of $\tilde{\chi}_1^0$ in AMSB
- Anapole Moment of $\tilde{\chi}_1^0$ in pMSSM

Summary

• Rotation curves of galaxies

- Rotation curves of galaxies
- Movement of galaxy cluster

Credit: NAS.

- Rotation curves of galaxies
- Movement of galaxy cluster
- Survey of large scale structures

Credit: NAS/

- Rotation curves of galaxies
- Movement of galaxy cluster
- Survey of large scale structures
- Imprints in the Cosmic Microwave Background

- Rotation curves of galaxies
- Movement of galaxy cluster
- Survey of large scale structures
- Imprints in the Cosmic Microwave Background
- DM constitutes $\sim 27\%$ of the total energy budget of the Universe

- Rotation curves of galaxies
- Movement of galaxy cluster
- Survey of large scale structures
- Imprints in the Cosmic Microwave Background
- DM constitutes $\sim 27\%$ of the total energy budget of the Universe
- What is it: Particle (WIMP, FIMP, axion,...?), MOND,...?

Dark Matter: Direct Detection Experiments

• Searches at colliders, direct- and indirect detection experiments

Dark Matter: Direct Detection Experiments

- Searches at colliders, direct- and indirect detection experiments
- Direct detection: elastic scattering between WIMP and nucleus, recoil signature in the detector

Dark Matter: Direct Detection Experiments

- Searches at colliders, direct- and indirect detection experiments
- Direct detection: elastic scattering between WIMP and nucleus, recoil signature in the detector
- Experiment and theory connected via scattering rate

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{\rho_0}{m_\chi m_N} \int \mathrm{d}^3 v \ v \ f_{\oplus}(\mathbf{v},t) \ \frac{\mathrm{d}\sigma_{\chi N}}{\mathrm{d}E_R}$$

- Searches at colliders, direct- and indirect detection experiments
- Direct detection: elastic scattering between WIMP and nucleus, recoil signature in the detector
- Experiment and theory connected via scattering rate

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{\rho_0}{m_{\chi}m_N} \int \mathrm{d}^3 v \ v \ f_{\oplus}(\mathbf{v},t) \ \frac{\mathrm{d}\sigma_{\chi N}}{\mathrm{d}E_R}$$

• Information from particle physics (DM mass, cross section)

- Searches at colliders, direct- and indirect detection experiments
- Direct detection: elastic scattering between WIMP and nucleus, recoil signature in the detector
- Experiment and theory connected via scattering rate

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{\rho_0}{m_\chi m_N} \int \mathrm{d}^3 v \; v \; f_{\oplus}(\mathbf{v}, t) \; \frac{\mathrm{d}\sigma_{\chi N}}{\mathrm{d}E_R}$$

• Information from particle physics (DM mass, cross section) and astrophysical (local abundance, velocity distribution)

- Searches at colliders, direct- and indirect detection experiments
- Direct detection: elastic scattering between WIMP and nucleus, recoil signature in the detector
- Experiment and theory connected via scattering rate

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{\rho_0}{m_\chi m_N} \int \mathrm{d}^3 v \ v \ f_{\oplus}(\mathbf{v}, t) \ \frac{\mathrm{d}\sigma_{\chi N}}{\mathrm{d}E_R}$$

- Information from particle physics (DM mass, cross section) and astrophysical (local abundance, velocity distribution)
- Cross section depends on model: magnetic moment, anapole moment,...?

• Effective interaction vertex

• Effective interaction vertex

•
$$M^{fi}_{\mu}(q) = (\gamma_{\mu} - q_{\mu} \not q/q^2) \left[f^{fi}_Q(q^2) + f^{fi}_A(q^2) q^2 \gamma_5 \right] - i\sigma_{\mu\nu} q^{\nu} \left[f^{fi}_M(q^2) + i f^{fi}_E(q^2) \gamma_5 \right]$$

Effective interaction vertex

- $M^{fi}_{\mu}(q) =$ $(\gamma_{\mu} q_{\mu} \not q/q^2) \left[f^{fi}_Q(q^2) + f^{fi}_A(q^2) q^2 \gamma_5 \right] i\sigma_{\mu\nu} q^{\nu} \left[f^{fi}_M(q^2) + i f^{fi}_E(q^2) \gamma_5 \right]$
- Formfactors: charge

• Effective interaction vertex

- $M^{fi}_{\mu}(q) = (\gamma_{\mu} q_{\mu} \not q/q^2) \left[f^{fi}_Q(q^2) + f^{fi}_A(q^2) q^2 \gamma_5 \right] i\sigma_{\mu\nu} q^{\nu} \left[f^{fi}_M(q^2) + i f^{fi}_E(q^2) \gamma_5 \right]$
- Formfactors: charge, anapole

• Effective interaction vertex

- $M^{fi}_{\mu}(q) = (\gamma_{\mu} q_{\mu} \not q/q^2) \left[f^{fi}_Q(q^2) + f^{fi}_A(q^2) q^2 \gamma_5 \right] i\sigma_{\mu\nu} q^{\nu} \left[f^{fi}_M(q^2) + i f^{fi}_E(q^2) \gamma_5 \right]$
- Formfactors: charge, anapole, magnetic dipole

• Effective interaction vertex

• $M^{fi}_{\mu}(q) = (\gamma_{\mu} - q_{\mu} \not q/q^2) \left[f^{fi}_Q(q^2) + f^{fi}_A(q^2) q^2 \gamma_5 \right] - i\sigma_{\mu\nu} q^{\nu} \left[f^{fi}_M(q^2) + i f^{fi}_E(q^2) \gamma_5 \right]$

• Formfactors: charge, anapole, magnetic dipole, electric dipole

•
$$M^{fi}_{\mu}(q) = (\gamma_{\mu} - q_{\mu} \not q/q^2) \left[f^{fi}_Q(q^2) + f^{fi}_A(q^2) q^2 \gamma_5 \right] - i\sigma_{\mu\nu} q^{\nu} \left[f^{fi}_M(q^2) + i f^{fi}_E(q^2) \gamma_5 \right]$$

- $M^{fi}_{\mu}(q) =$ $(\gamma_{\mu} - q_{\mu} \not{q}/q^2) \left[f^{fi}_Q(q^2) + f^{fi}_A(q^2) q^2 \gamma_5 \right] - i\sigma_{\mu\nu} q^{\nu} \left[f^{fi}_M(q^2) + i f^{fi}_E(q^2) \gamma_5 \right]$ • For zero momentum transfer $(q^2 = 0)$
 - $$\begin{split} f_Q^{fi}(0) &= q_{fi} \quad \text{charge}, \\ f_A^{fi}(0) &= a_{fi} \quad \text{anapole moment}, \\ f_M^{fi}(0) &= \mu_{fi} \quad \text{magnetic moment}, \\ f_E^{fi}(0) &= \epsilon_{fi} \quad \text{electric moment}. \end{split}$$

- $M^{fi}_{\mu}(q) =$ $(\gamma_{\mu} - q_{\mu} \not{q}/q^2) \left[f^{fi}_Q(q^2) + f^{fi}_A(q^2) q^2 \gamma_5 \right] - i\sigma_{\mu\nu} q^{\nu} \left[f^{fi}_M(q^2) + i f^{fi}_E(q^2) \gamma_5 \right]$ • For zero momentum transfer $(q^2 = 0)$
 - $$\begin{split} f_Q^{fi}(0) &= q_{fi} \quad \text{charge}, \\ f_A^{fi}(0) &= a_{fi} \quad \text{anapole moment}, \\ f_M^{fi}(0) &= \mu_{fi} \quad \text{magnetic moment}, \\ f_E^{fi}(0) &= \epsilon_{fi} \quad \text{electric moment}. \end{split}$$
- $\psi_i \neq \psi_f$: transition formfactors

- $M^{fi}_{\mu}(q) =$ $(\gamma_{\mu} - q_{\mu} \not{q}/q^2) \left[f^{fi}_Q(q^2) + f^{fi}_A(q^2) q^2 \gamma_5 \right] - i\sigma_{\mu\nu} q^{\nu} \left[f^{fi}_M(q^2) + i f^{fi}_E(q^2) \gamma_5 \right]$ • For zero momentum transfer $(q^2 = 0)$
 - $$\begin{split} f_Q^{fi}(0) &= q_{fi} \quad \text{charge}, \\ f_A^{fi}(0) &= a_{fi} \quad \text{anapole moment}, \\ f_M^{fi}(0) &= \mu_{fi} \quad \text{magnetic moment}, \\ f_E^{fi}(0) &= \epsilon_{fi} \quad \text{electric moment}. \end{split}$$
- $\psi_i \neq \psi_f$: transition formfactors
- $\psi_i = \psi_f$ (diagonal) and ψ Majorana: only the anapole is non-vanishing!

Simplified DM WIMP models with scalar mediator(s) [Kopp et al. (1401.6457), Garny et al. (1503.01500), Alves et al. (1710.11290), Baker and Thamm (1806.07896), ...]

Simplified DM WIMP models with scalar mediator(s) [Kopp et al. (1401.6457), Garny et al. (1503.01500), Alves et al. (1710.11290), Baker and Thamm (1806.07896), ...]

- Simplified DM WIMP models with scalar mediator(s) [Kopp et al. (1401.6457), Garny et al. (1503.01500), Alves et al. (1710.11290), Baker and Thamm (1806.07896), ...]
 - Dirac: dipole interactions dominant

- Simplified DM WIMP models with scalar mediator(s) [Kopp et al. (1401.6457), Garny et al. (1503.01500), Alves et al. (1710.11290), Baker and Thamm (1806.07896), ...]
 - Dirac: dipole interactions dominant
 - Majorana: anapole only EM interaction

- Simplified DM WIMP models with scalar mediator(s) [Kopp et al. (1401.6457), Garny et al. (1503.01500), Alves et al. (1710.11290), Baker and Thamm (1806.07896), ...]
 - Dirac: dipole interactions dominant
 - Majorana: anapole only EM interaction
- Experimental constraints:

- Simplified DM WIMP models with scalar mediator(s) [Kopp et al. (1401.6457), Garny et al. (1503.01500), Alves et al. (1710.11290), Baker and Thamm (1806.07896), ...]
 - Dirac: dipole interactions dominant
 - Majorana: anapole only EM interaction
- Experimental constraints:
 - Dirac: mostly excluded by XENON1T, indirect searches, future collider

- Simplified DM WIMP models with scalar mediator(s) [Kopp et al. (1401.6457), Garny et al. (1503.01500), Alves et al. (1710.11290), Baker and Thamm (1806.07896), ...]
 - Dirac: dipole interactions dominant
 - Majorana: anapole only EM interaction
- Experimental constraints:
 - Dirac: mostly excluded by XENON1T, indirect searches, future collider
 - Majorana: currently unconstrained, future DD and collider

- Simplified DM WIMP models with scalar mediator(s) [Kopp et al. (1401.6457), Garny et al. (1503.01500), Alves et al. (1710.11290), Baker and Thamm (1806.07896), ...]
 - Dirac: dipole interactions dominant
 - Majorana: anapole only EM interaction
- Experimental constraints:
 - Dirac: mostly excluded by XENON1T, indirect searches, future collider
 - Majorana: currently unconstrained, future DD and collider
- DD is most sensitive, what is the reach?

Anapole Moment: Experimental Limits

• DM - Fermion - Scalar interaction:

$$\mathcal{L}_{\text{FFS}} = \overline{\chi} \left[c_L P_L + c_R P_R \right] \tilde{f}^* f + \text{h.c.}$$

• DM - Fermion - Scalar interaction:

$$\mathcal{L}_{\text{FFS}} = \overline{\chi} \left[c_L P_L + c_R P_R \right] \tilde{f}^* f + \text{h.c.}$$

• DM - Fermion - Vector interaction:

$$\mathcal{L}_{\rm FFV} = V_{\mu}^{-} \overline{\chi} \, \gamma_{\mu} \left[v_L P_L + v_R P_R \right] \chi^+ + \text{h.c.}$$

• DM - Fermion - Scalar interaction:

$$\mathcal{L}_{\text{FFS}} = \overline{\chi} \left[c_L P_L + c_R P_R \right] \tilde{f}^* f + \text{h.c.}$$

• DM - Fermion - Vector interaction:

$$\mathcal{L}_{\rm FFV} = V_{\mu}^{-} \overline{\chi} \gamma_{\mu} \left[v_L P_L + v_R P_R \right] \chi^+ + \text{h.c.}$$

• Diagrams with vectors \rightarrow unphysical result!

• DM - Fermion - Scalar interaction:

$$\mathcal{L}_{\text{FFS}} = \overline{\chi} \left[c_L P_L + c_R P_R \right] \tilde{f}^* f + \text{h.c.}$$

• DM - Fermion - Vector interaction:

$$\mathcal{L}_{\rm FFV} = V_{\mu}^{-} \overline{\chi} \gamma_{\mu} \left[v_L P_L + v_R P_R \right] \chi^+ + \text{h.c.}$$

- Diagrams with vectors \rightarrow unphysical result!
- Background Field Method: $\gamma \rightarrow \hat{\gamma}$

[Works by Cornwall, Papavassiliou, Bernabeu, Rosado, Vidal,

Binosi... See review 0909.2536]

• Contributions to anapole moment:

$$\mathcal{A}_{S} = \frac{e}{96\pi^{2}m_{\chi}^{2}}Q_{f}\left[|c_{L}|^{2} - |c_{R}|^{2}\right]\mathcal{F}_{S}(\mu,\eta)$$
$$\mathcal{A}_{V} = -\frac{e}{48\pi^{2}m_{\chi}^{2}}\left[|v_{L}|^{2} - |v_{R}|^{2}\right]\mathcal{F}_{V}(\mu,\eta_{V})$$

• Contributions to anapole moment:

$$\mathcal{A}_{S} = \frac{e}{96\pi^{2}m_{\chi}^{2}}Q_{f}\left[|c_{L}|^{2} - |c_{R}|^{2}\right]\mathcal{F}_{S}(\mu,\eta)$$
$$\mathcal{A}_{V} = -\frac{e}{48\pi^{2}m_{\chi}^{2}}\left[|v_{L}|^{2} - |v_{R}|^{2}\right]\mathcal{F}_{V}(\mu,\eta_{V})$$

• with
$$\mu = m_f/m_\chi, \, \eta_{(V)} = m_{S(V)}/m_\chi$$

• Contributions to anapole moment:

$$\mathcal{A}_{S} = \frac{e}{96\pi^{2}m_{\chi}^{2}}Q_{f}\left[|c_{L}|^{2} - |c_{R}|^{2}\right]\mathcal{F}_{S}(\mu,\eta)$$
$$\mathcal{A}_{V} = -\frac{e}{48\pi^{2}m_{\chi}^{2}}\left[|v_{L}|^{2} - |v_{R}|^{2}\right]\mathcal{F}_{V}(\mu,\eta_{V})$$

• with
$$\mu = m_f / m_{\chi}, \, \eta_{(V)} = m_{S(V)} / m_{\chi}$$

• $\mathcal{F}_{S,V}$ boosted for $\mu \approx 1$ and $\eta \ll 1$ (or vice versa)

Anapole Moment: Model-Independent Results (Scalar)

• $c_L = 1$, $c_R = 0$, $Q_f = -1$, colorless

Anapole Moment: Model-Independent Results (Vector)

•
$$v_L = 1, v_R = 0$$

• Minimal realization of SM+SUSY: Minimal Supersymmetric Standard Model (MSSM)

- Minimal realization of SM+SUSY: Minimal Supersymmetric Standard Model (MSSM)
- Every fermion has a corresponding supersymmetric bosonic partner called sfermion

- Minimal realization of SM+SUSY: Minimal Supersymmetric Standard Model (MSSM)
- Every fermion has a corresponding supersymmetric bosonic partner called sfermion
- Every gauge field has a corresponding supersymmetric fermionic partner called gaugino

- Minimal realization of SM+SUSY: Minimal Supersymmetric Standard Model (MSSM)
- Every fermion has a corresponding supersymmetric bosonic partner called sfermion
- Every gauge field has a corresponding supersymmetric fermionic partner called gaugino
- Two Higgs doublets with fermionic higgsinos as partners

- Minimal realization of SM+SUSY: Minimal Supersymmetric Standard Model (MSSM)
- Every fermion has a corresponding supersymmetric bosonic partner called sfermion
- Every gauge field has a corresponding supersymmetric fermionic partner called gaugino
- Two Higgs doublets with fermionic higgsinos as partners
- Mass eigenstates of neutral gauginos+higgsinos are neutralinos \rightarrow lightest is DM candidate χ ($\tilde{\chi}_1^0$)

• MSSM has $\mathcal{O}(100)$ new parameters, too many to be predictive

- MSSM has $\mathcal{O}(100)$ new parameters, too many to be predictive
- Assume type of SUSY-breaking mediation

- MSSM has $\mathcal{O}(100)$ new parameters, too many to be predictive
- Assume type of SUSY-breaking mediation
 - **(** Supergravity mediated (mSUGRA): m_0 , $m_{1/2}$, A_0 , $\tan\beta$, $\operatorname{sgn}\mu$

- MSSM has $\mathcal{O}(100)$ new parameters, too many to be predictive
- Assume type of SUSY-breaking mediation
 - **1** Supergravity mediated (mSUGRA): m_0 , $m_{1/2}$, A_0 , $\tan\beta$, $\operatorname{sgn}\mu$
 - 2 Anomaly mediated (mAMSB): m_0 , $m_{3/2}$, $\tan\beta$, $\operatorname{sgn}\mu$

- MSSM has $\mathcal{O}(100)$ new parameters, too many to be predictive
- Assume type of SUSY-breaking mediation
 - **1** Supergravity mediated (mSUGRA): m_0 , $m_{1/2}$, A_0 , $\tan\beta$, $\operatorname{sgn}\mu$
 - **2** Anomaly mediated (mAMSB): m_0 , $m_{3/2}$, $\tan \beta$, $\operatorname{sgn} \mu$
- Phenomenological MSSM with 19 free parameters (R-parity conserving)

- MSSM has $\mathcal{O}(100)$ new parameters, too many to be predictive
- Assume type of SUSY-breaking mediation
 - **1** Supergravity mediated (mSUGRA): m_0 , $m_{1/2}$, A_0 , $\tan\beta$, $\operatorname{sgn}\mu$
 - **2** Anomaly mediated (mAMSB): m_0 , $m_{3/2}$, $\tan \beta$, $\operatorname{sgn} \mu$
- Phenomenological MSSM with 19 free parameters (R-parity conserving)
 - 3 Soft gaugino masses M_1, M_2, M_3
 - 10 Soft sfermion masses \mathcal{M}_f
 - 3 Higgs sector: μ , $\tan\beta$, m_A
 - 3 Trilinear couplings (3rd Gen.) A_t, A_b, A_τ

MSSM: Anapole Moment of $\tilde{\chi}_1^0$ in SUGRA

- $m_0=9\,{\rm TeV}$, $m_{1/2}\in[2550,3000]\,{\rm GeV}, A_0=3\,{\rm TeV},\,\tan\beta=10,$ ${\rm sgn}\mu=+1$
- The higgsino-nature of $\tilde{\chi}^0_1$ enhances the chargino-W contribution

MSSM: Anapole Moment of $\tilde{\chi}_1^0$ in AMSB

• $m_0 = 25 \text{ TeV}, \ m_{3/2} \in [600, 850] \text{ TeV} \tan \beta = 5, \ \text{sgn}\mu = +1$

• $\tilde{\chi}_1^0$ is wino like with degenerate chargino mixing angles $\Rightarrow v_L \approx v_R$

MSSM: Anapole Moment of $\tilde{\chi}_1^0$ in pMSSM

- $\mu \in [100, 2500] \text{ GeV}, \ \mathcal{M}_L = 280 \text{ GeV}, \ \mathcal{M}_1 = 285 \text{ GeV}, \ \mathcal{M}_2 = 300 \text{ GeV}, \ \mathcal{M}_3 = \mathcal{M}_{\tilde{\tau}_{L/R}} = \mathcal{M}_{\tilde{Q}} = 3 \text{ TeV}, \ A_t = 4 \text{ TeV}, \ A_b = A_\tau = 0, \ m_A = 5 \text{ TeV}, \ \tan \beta = 50 \text{ defined } @ 3 \text{ TeV} \end{cases}$
- For $m_{\chi} \lesssim 200 \text{ GeV}$: $m_{\chi} \approx m_{\chi_1^+}$ and $v_L \neq v_R$, for $m_{\chi} \gtrsim 200 \text{ GeV}$: χ is bino-like

Merlin Reichard (TUM)

• Novel calculation of the vector contribution to the anapole moment of a Majorana fermion using the Background Field Method

- Novel calculation of the vector contribution to the anapole moment of a Majorana fermion using the Background Field Method
- Can have sizeable value depending on $c_{L/R}$ and $v_{L/R}$, but reachable with future direct detection experiments (XENONnT, LZ)

- Novel calculation of the vector contribution to the anapole moment of a Majorana fermion using the Background Field Method
- Can have sizeable value depending on $c_{L/R}$ and $v_{L/R}$, but reachable with future direct detection experiments (XENONnT, LZ)
- In viable SUGRA and AMSB: Too small if $\Omega_{\chi}h^2 = 0.12$ and $m_h = 125 {\rm GeV}$ should be satisfied

- Novel calculation of the vector contribution to the anapole moment of a Majorana fermion using the Background Field Method
- Can have sizeable value depending on $c_{L/R}$ and $v_{L/R}$, but reachable with future direct detection experiments (XENONnT, LZ)
- In viable SUGRA and AMSB: Too small if $\Omega_{\chi}h^2=0.12$ and $m_h=125{\rm GeV}$ should be satisfied
- In pMSSM scenarios it can be sizeable, via scalar and/or vector contribution

Thank you for your attention

Questions?

Merlin Reichard (TUM)

Extra: Analytical Anapole Expressions I

• Anapole functions:

$$\mathcal{A}_{S} = \frac{e}{96\pi^{2}m_{\chi}^{2}}Q_{f}\left[|c_{L}|^{2} - |c_{R}|^{2}\right]\mathcal{F}_{S}(\mu,\eta)$$
$$\mathcal{A}_{V} = -\frac{e}{48\pi^{2}m_{\chi}^{2}}\left[|v_{L}|^{2} - |v_{R}|^{2}\right]\mathcal{F}_{V}(\mu,\eta_{V})$$

• with
$$\mu = m_f/m_\chi$$
, $\eta_{(V)} = m_{S(V)}/m_\chi$ and

$$\mathcal{F}_{S}(\mu,\eta) = \frac{3}{2} \log\left(\frac{\eta^{2}}{\mu^{2}}\right) - (3\eta^{2} - 3\mu^{2} + 1)f(\mu,\eta),$$
$$\mathcal{F}_{V}(\mu,\eta_{V}) = \frac{3}{2} \log\left(\frac{\mu^{2}}{\eta_{V}^{2}}\right) + (3\eta_{V}^{2} - 3\mu^{2} - 7)f(\mu,\eta_{V})$$

Extra: Analytical Anapole Expressions II

• Scalar- and vector contribution governed by

$$f(\mu,\eta) = \frac{1}{2} \int_0^1 \frac{\mathrm{d}x}{x\eta^2 + (1-x)\mu^2 - x(1-x)} \\ = \begin{cases} \frac{1}{\sqrt{\Delta}} \operatorname{arctanh}\left(\frac{\sqrt{\Delta}}{\mu^2 + \eta^2 - 1}\right) & \Delta > 0\\ \frac{1}{\sqrt{|\Delta|}} \operatorname{arctan}\left(\frac{\sqrt{|\Delta|}}{\mu^2 + \eta^2 - 1}\right) & \Delta < 0\\ \frac{2}{(\mu^2 - \eta^2)^2 - 1} & \Delta = 0 \end{cases}$$

Extra: Scattering Rate for the Anapole Interaction

$$\frac{d\sigma}{dE_R} = \alpha_{\rm EM} \mathcal{A}^2 \left[Z^2 \left(2m_T - \left(1 + \frac{m_T}{m_\chi} \right)^2 \frac{E_R}{v^2} \right) F_Z^2(q^2) \right. \\ \left. + \frac{1}{3} \frac{m_T}{m_\chi^2} \left(\frac{\bar{\mu}_T}{\mu_N} \right)^2 \frac{E_R}{v^2} F_D^2(q^2) \right]$$

Extra: Anapole Moment of $\tilde{\chi}_1^0$ in pMSSM: Details

Merlin Reichard (TUM)

SUSY 2021

Extra: Anapole Moment of $\tilde{\chi}_1^0$ in pMSSM-b

• $M_1 \in [290, 1000] \text{ GeV}, \ \mathcal{M}_L = 300 \text{ GeV}, \ M_2 = 285 \text{ GeV}, \ \mu = 5 \text{ TeV}, \ M_3 = \mathcal{M}_{\tilde{\tau}_{L/R}} = \mathcal{M}_{\tilde{Q}} = 2 \text{ TeV}, \ A_t = 5 \text{ TeV}, \ A_b = A_{\tau} = 0, \ m_A = 5 \text{ TeV}, \ \tan \beta = 50 \text{ defined} \ @ 3 \text{ TeV}$

• $\tilde{\chi}_1^0$ is wino-like, $\sin \phi_{L/R} \approx 0$

Extra: Anapole Moment of $\tilde{\chi}_1^0$ in pMSSM-b: Details

Merlin Reichard (TUM)

SUSY 2021