

Searches for third generation squarks with the CMS detector

SUSY 2021
Caleb Smith (KU)
August 23, 2021
Link to indico

Outline

- CMS searches using the LHC Run 2 (137 fb⁻¹) dataset.
- Top squark searches
 - All hadronic (no charged leptons) final state.
 - Combined (0, 1, and 2 charged leptons) final state.
 - Top corridor study.
- Dark matter search
 - Scalar or pseudoscalar mediators that couple to quarks and dark matter.

Supersymmetry (SUSY)

Supersymmetry (SUSY)

- SUSY can resolve the hierarchy problem and offers a dark matter candidate.
- Regulates divergent terms in the Higgs mass calculation: important for third generation quarks.
- Cancellation works best for lighter stops.

Link to Image

 Low mass third generation squarks are accessible at the LHC.

0 .

All Hadronic Stop Search

 $m(\tilde{t}_1)$ [GeV]

300

- All hadronic final state: arXiv:2103.01290
- Direct top squark production models.
- Final states determined by Δm: mass difference between top squark and neutralino.
- Analysis targets both compressed (low Δm) and uncompressed (high Δm) regions.
- Final states have jets, missing p_T, tops, bottoms, and Ws.
- Veto charged leptons.

Identifying Top Quarks and W Bosons

- DNNs used to identify hadronically decaying top quarks and W bosons.
- Resolved and merged top taggers provide high efficiency for low and high p_⊤ tops.
- Bottom quarks identified with low and high p_⊤ b taggers.

CMS Event Displays

Top tagging algorithms in action for data events in the search region. Event with two identified resolved top quarks (left). Event with two identified merged top quarks (right).

Search regions

- Compressed (low Δm)
- Uncompressed (high Δm)

Primary backgrounds

- "Lost Lepton": tt, W + jets, etc. where lepton is not reconstructed
- Z (to neutrinos) + jets
- QCD multijet
- Data driven background predictions.
 - Derived from signal depleted control regions.
 - Monte Carlo simulation used to extrapolate control region data to signal region.

Compressed (low Δ m)

Uncompressed (high Δ m)

- Subset of 183 search bins.
- Bin in H_τ, missing p_τ, number of jets and bottoms.
- Low Δm : veto tops and Ws. High Δm : bin in number of tops and Ws.
- No excess in data beyond SM background prediction.

- All hadronic final state:
 - arXiv:2103.01290
- Extends stop mass limit up to 1310 GeV.
 - Larger data set.
 - Optimized search bins.
 - Improved object tagging.
- Only one model shown here.
- Does not consider top corridor.

- All hadronic final state: arXiv:2103.01290
- Excluded regions for direct stop production models.
- Extends limits in compressed and uncompressed regions.
- Does not consider top corridor.

Combined Stop Search

- Limit on stop production from combination of 0, 1, and 2 lepton final state searches.
- Only one model shown here.
- arXiv:2107.10892

Top Corridor Region

- Dedicated top corridor region analysis: arXiv:2107.10892
- Challenging region due to similarity between signal and tt background.
- Top corridor region:

- \circ $\Delta m_{cor} < 30 \text{ GeV}$
- m_{stop} < 275 GeV (approx.)
- Require two opposite charge leptons, missing p_T > 50 GeV, and other cuts to reduce tt, tW, and DY backgrounds.
- DNN used to increase signal sensitivity by distinguishing signal from tt background.

Dark Matter

Dark Matter

- Dark matter accounts for a large portion (~23%) of the energy in the universe, but is not explained by the SM!
- The lightest supersymmetric particle (LSP) is a potential candidate for dark matter.
- Dark matter can take other forms and couplings with the SM.

Dark Matter Production

- Dark matter production model: arXiv:2107.10892
- Couples to the top quark through a scalar (φ) or pseudoscalar (a).
- Dark matter (X) results in missing transverse energy in the final state.
- Kinematics of this model are similar to some direct stop production models.
- Use inclusive final state (0, 1, and 2 charged leptons).

Limits on Dark Matter Models

- Mediator couplings to quarks and dark matter set to 1.
- Scalar mediator (ϕ): m_{ϕ} excluded up to 400 GeV for m_{χ} = 1.
- Pseudoscalar mediator (a): m_a excluded up to 420 GeV for m_x = 1.

Conclusions

- LHC Run 2 (137 fb⁻¹) stop searches extend mass limit by ~200 GeV.
- CMS combination excludes stops up to 1325 GeV.
- Full top corridor region excluded for the first time.
- Dark matter mediators excluded up to 420 GeV.
- Sbottom masses up to 1600 GeV excluded by CMS: <u>arXiv:2012.08600</u>
- LHC Run 3 (2022–2024) projecting 300 fb⁻¹ integrated luminosity! The hunt continues...

Backup Slides


```
Baseline selection
                            N_{\rm i} \ge 2 (R = 0.4), p_{\rm T} > 30 GeV, |\eta| < 2.4
Jets
                            H_{\rm T} > 300 \, {\rm GeV}
H_{\mathsf{T}}
                             p_{\rm T}^{\rm miss} > 250\,{\rm GeV}
                            \Delta \phi \left( \vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{j}_{1} \right) > 0.5
p_{\mathrm{T}}^{\mathrm{miss}}
                            \Delta \phi (\vec{p}_{T}^{\text{miss}}, j_{2}) > 0.15
                             \Delta \phi \left( \vec{p}_{T}^{\text{miss}}, j_{3} \right) > 0.15 (when applicable)
Veto electron p_T > 5 \text{ GeV}, |\eta| < 2.5, p_T^{\text{sum}} < 0.1 p_T
Veto muon p_{\rm T} > 5 \,{\rm GeV}, |\eta| < 2.4, p_{\rm T}^{\rm sum} < 0.2 \,p_{\rm T}
Veto \tau_{\rm h}
                 p_{\rm T} > 20 \,{\rm GeV}, |\eta| < 2.4, m_{\rm T} < 100 \,{\rm GeV}
                            PF charged candidates, |\eta| < 2.5, m_T < 100 \,\text{GeV}
                            p_{\rm T} > 5 \, {\rm GeV}, p_{\rm T}^{\rm sum} < 0.2 \, p_{\rm T} for electron and muon tracks
Veto track
                            p_{\rm T} > 10 \, {\rm GeV}, p_{\rm T}^{\rm sum} < 0.1 \, p_{\rm T} for charged-hadron tracks
Low \Delta m baseline selection
N_{\rm t}, N_{\rm W}, N_{\rm res} N_{\rm t} = N_{\rm W} = N_{\rm res} = 0
                m_{\rm T}^{\rm b} < 175\,{
m GeV} (for events with N_{\rm h} \ge 1)
                            N_{\rm i}({\rm ISR})=1~(R=0.8),~p_{\rm T}^{\rm ISR}>200\,{\rm GeV},~|\eta|<2.4
ISR jet
                            \Delta \phi \left( \vec{p}_{T}^{\text{miss}}, j_{\text{ISR}} \right) > 2
p_{\mathrm{T}}^{\mathrm{miss}}
                            p_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} > 10\sqrt{\rm GeV}
High \Delta m baseline selection
                            N_{\rm i} \ge 5 \ (R = 0.4), \, p_{\rm T} > 30 \, {\rm GeV}, \, |\eta| < 2.4
Jets
b tagging
                           N_{\rm b} > 1
p_{\mathrm{T}}^{\mathrm{miss}}
                             \Delta \phi \left( \vec{p}_{T}^{\text{miss}}, j_{1,2,3,4} \right) > 0.5
```


$\overline{N_{j}}$	$N_{\rm b}$	$N_{ m SV}$	m _T ^b [GeV]	$p_{\rm T}^{\rm ISR}$ [GeV]	$p_{\mathrm{T}}^{\mathrm{b}}$ [GeV]	$p_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	Bin number
2–5	0	0		>500		$[450, 550, 650, 750, \infty]$	0–3
≥6	0	0		>500		$[450, 550, 650, 750, \infty]$	4–7
2–5	0	≥ 1		>500		$[450, 550, 650, 750, \infty]$	8–11
≥6	0	≥ 1		>500		$[450, 550, 650, 750, \infty]$	12–15
\geq 2	1	0	<175	300-500	20–40	$[300, 400, 500, 600, \infty]$	16–19
\geq 2	1	0	<175	300-500	40–70	$[300, 400, 500, 600, \infty]$	20–23
\geq 2	1	0	<175	>500	20–40	$[450, 550, 650, 750, \infty]$	24–27
\geq 2	1	0	<175	>500	40-70	$[450, 550, 650, 750, \infty]$	28–31
\geq 2	1	≥ 1	<175	>300	20–40	$[300, 400, 500, \infty]$	32–34
\geq 2	\geq 2		<175	300-500	40-80	$[300, 400, 500, \infty]$	35–37
\geq 2	\geq 2		<175	300-500	80–140	$[300, 400, 500, \infty]$	38–40
≥ 7	\geq 2		<175	300-500	>140	$[300, 400, 500, \infty]$	41–43
\geq 2	\geq 2	_	<175	>500	40-80	$[450, 550, 650, \infty]$	44–46
\geq 2	\geq 2	_	<175	>500	80-140	$[450, 550, 650, \infty]$	47–49
_ ≥7	≥2	_	<175	>300	>140	$[450, 550, 650, \infty]$	50–52

m _T ^b [GeV]	$N_{\rm j}$	$N_{\rm b}$	N_{t}	$N_{\rm W}$	N_{res}	H _T [GeV]	p _T ^{miss} [GeV]	Bin number
<175	≥7	1	≥0	≥0	≥1	>300	[250, 300, 400, 500, ∞]	53-56
<175	≥7	\geq 2	≥ 0	≥ 0	≥ 1	>300	$[250, 300, 400, 500, \infty]$	57-60
>175	≥5	1	0	0	0	>1000	$[250, 350, 450, 550, \infty]$	61-64
>175	≥5	\geq 2	0	0	0	>1000	[250, 350, 450, 550, ∞]	65-68
>175	≥5	1	≥1	0	0	300-1000	[250, 550, 650, ∞]	69-71
>175	≥5	1	≥1	0	0	1000-1500	[250, 550, 650, ∞]	72-74
>175	>5	1	≥1	0	0	>1500	[250, 550, 650, ∞]	75-77
>175	>5	1	0	≥ 1	0	300-1300	[250, 350, 450, ∞]	78-80
>175	>5	1	0	≥1	0	>1300	[250, 350, 450, ∞]	81-83
>175	>5	1	0	0	>1	300-1000	[250, 350, 450, 550, 650, ∞]	84-88
>175	≥5	1	0	0	 ≥1	1000-1500	[250, 350, 450, 550, 650, ∞]	89-93
>175	>5	1	0	0	≥1	>1500	[250, 350, 450, 550, 650, ∞]	94–98
>175	>5	1	≥1	≥1	0	>300	[250, 550, ∞]	99–100
>175	>5	1	≥1	0	≥1	>300	[250, 550, ∞]	101-102
>175	>5	1	0	>1	>1	>300	[250, 550, ∞]	103-104
>175	>5	2	1	0	0	300–1000	[250, 550, 650, ∞]	105-104
>175	>5	2	1	0	0	1000-1500	[250, 550, 650, ∞]	108–110
>175	≥5 >5	2	1	0	0	>1500	[250, 550, 650, ∞]	111–113
>175	≥5 >5	2	0	1	0	300-1300	[250, 350, 450, ∞]	111–113
	≥5 >5	2		1			. , , , .	
>175		2	0		0	>1300	[250, 350, 450, ∞]	117–119
>175	≥5		0	0	1	300-1000	[250, 350, 450, 550, 650, ∞]	120-124
>175	≥5	2	0	0	1	1000-1500	[250, 350, 450, 550, 650, ∞]	125–129
>175	≥5	2	0	0	1	>1500	[250, 350, 450, 550, 650, ∞]	130-134
>175	≥5	2	1	1	0	>300	[250, 550, ∞]	135–136
>175	≥5	2	1	0	1	300-1300	[250, 350, 450, ∞]	137–139
>175	≥5	2	1	0	1	>1300	[250, 350, 450, ∞]	140–142
> 175	≥5	2	0	1	1	>300	[250, 550, ∞]	143-144
> 175	≥5	2	2	0	0	>300	[250, 450, ∞]	145–146
> 175	≥5	2	0	2	0	>300	>250	147
>175	≥5	2	0	0	2	300-1300	[250, 450, ∞]	148-149
>175	≥5	2	0	0	2	>1300	[250, 450, ∞]	150-151
>175	≥5	2	N_{t} +	$-N_{\rm W} +$	$N_{\rm res} \geq 3$	>300	>250	152
>175	≥5	≥3	1	0	0	300-1000	[250, 350, 550, ∞]	153-155
>175	≥5	≥3	1	0	0	1000-1500	[250, 350, 550, ∞]	156-158
>175	≥5	≥3	1	0	0	>1500	[250, 350, 550, ∞]	159-161
>175	≥5	≥3	0	1	0	>300	[250, 350, 550, ∞]	162-164
>175	≥5	≥3	0	0	1	300-1000	[250, 350, 550, ∞]	165-167
>175	≥5	≥3	0	0	1	1000-1500	[250, 350, 550, ∞]	168-170
>175	>5	>3	0	0	1	>1500	[250, 350, 550, ∞]	171-173
>175	>5	>3	1	1	0	>300	>250	174
>175	≥5	>3	1	0	1	>300	[250, 350, ∞]	175–176
>175	>5	>3	0	1	1	>300	>250	177
>175	>5	>3	2	0	0	>300	>250	178
>175	≥5 ≥5	≥3 ≥3	0	2	0	>300	>250	179
>175	≥5 ≥5	≥3 ≥3	0	0	2	>300	[250, 350, ∞]	180–181
>175	≥5 >5	≥3 ≥3			$N_{\rm res} \geq 3$	>300	[250, 350, ∞] >250	182
/1/3			ıvt ⊤	ıvW ⊤	ı vres ≤ 3	/500	/230	104

Combined Stop Search

