Muon g-2 and the B-physics anomalies in RPV supersymmetry and the discovery prospect at LHC and future colliders

Fang Xu

Collaborators: Bhupal Dev, Amarjit Soni arXiv:2106.15647

SUSY 2021

Washington University in St. Louis

August 27, 2021

Overview

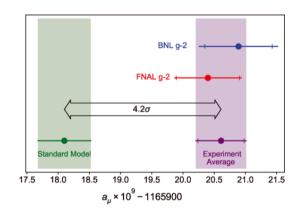
- Introduction
 - Motivation
 - \bullet $(g-2)_{\mu}$, $R_{D^{(*)}}$ and $R_{K^{(*)}}$ Anomalies
 - Explanation in RPV3 SUSY
- Parameter space and benchmark scenarios
 - Numerical scan
 - Benchmark scenarios
- Simulation and results
 - Collider signals
 - Anomalies and constraints in parameter space
- Discussion and conclusions

Motivation

- The recent experimental results of muon g-2 (from the Fermilab) and the lepton flavor universality violation in rare B-meson decays (from the LHCb, Belle, BaBar) could be the hints (> 3σ anomalies) of new physics beyond the Standard Model.
- Under the minimal RPV supersymmetric framework, assuming the mass of third generation sfermions lighter than the other two generations (called "RPV3", Altmannshofer, Dev, Soni (PRD 2017)),
 - muon g-2 and the B-physics anomalies could be addressed simultaneously and also could be tested at LHC and beyond.

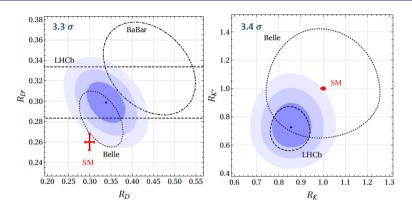
muon g-2 anomaly

- $\Delta a_{\mu} = a_{\mu}^{\rm exp} a_{\mu}^{\rm SM} =$ $(251 \pm 59) \times 10^{-11} \text{ has}$ a significance of 4.2σ .
- Could be the signal of new physics beyond the SM where some new couplings to muon could be detectable by LHC or future colliders



B. Abi et al. (PRL 2021)

B-physics anomalies



Altmannshofer, Dev, Soni, Sui (PRD 2020)

$$\bullet \ R_{D^{(*)}} = \tfrac{\mathrm{BR}(B \to D^{(*)} \tau \nu)}{\mathrm{BR}(B \to D^{(*)} \ell \nu)} \ (\text{with} \ \ell = e, \mu), \ R_{K^{(*)}} = \tfrac{\mathrm{BR}(B \to K^{(*)} \mu^+ \mu^-)}{\mathrm{BR}(B \to K^{(*)} e^+ e^-)}$$

• Also imply possible new couplings to leptons.

Explanation of anomalies in RPV3 SUSY

• The LQD and LLE part of the RPV SUSY Lagrangian which contains the λ' and λ couplings respectively and are relevant for the $R_{D^{(*)}}$, $R_{K^{(*)}}$ and $(g-2)_{\mu}$ anomalies.

$$\mathcal{L}_{LQD} = \lambda'_{ijk} (\widetilde{\nu}_{iL} \overline{d}_{kR} d_{jL} + \widetilde{d}_{jL} \overline{d}_{kR} \nu_{iL} + \widetilde{d}_{kR}^* \overline{\nu}_{iL}^c d_{jL}
- \widetilde{e}_{iL} \overline{d}_{kR} u_{jL} - \widetilde{u}_{jL} \overline{d}_{kR} e_{iL} - \widetilde{d}_{kR}^* \overline{e}_{iL}^c u_{jL}) + \text{H.c.}$$
(1)

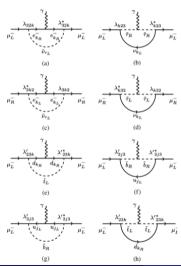
$$\mathcal{L}_{LLE} = \frac{1}{2} \lambda_{ijk} \left[\widetilde{\nu}_{iL} \overline{e}_{kR} e_{jL} + \widetilde{e}_{jL} \overline{e}_{kR} \nu_{iL} + \widetilde{e}_{kR}^* \overline{\nu}_{iL}^c e_{jL} - (i \leftrightarrow j) \right] + \text{H.c.}$$
 (2)

• Following previous discussions (Kim, Kyae, Lee (PLB 2001); Altmannshofer, Dev, Soni, Sui (PRD 2020)), in RPV3 framework, $(g-2)_{\mu}$ correction can be written as:

$$\Delta a_{\mu} = \frac{m_{\mu}^2}{96\pi^2} \sum_{k=1}^{3} \left(\frac{2(|\lambda_{32k}|^2 + |\lambda_{3k2}|^2)}{m_{\widetilde{\nu}_{\tau}}^2} - \frac{|\lambda_{3k2}|^2}{m_{\widetilde{\tau}_{L}}^2} - \frac{|\lambda_{k23}|^2}{m_{\widetilde{\tau}_{R}}^2} + \frac{3|\lambda'_{2k3}|^2}{m_{\widetilde{b}_{R}}^2} \right)$$
(3)

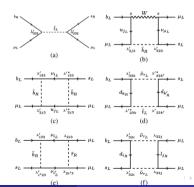
Explanation of anomalies in RPV3 SUSY

 $(g-2)_{\mu}$ Kim, Kyae, Lee (PLB 2001)



 $R_{D(*)}$ Deshpande, He (EPJC 2017); Altmannshofer, Dev, Soni (PRD 2017) etc.

 $R_{K^{(st)}}$ Das, Hati, Kumar, Mahajan (PRD 2017); Trifinopoulos (EPJC 2018) etc.



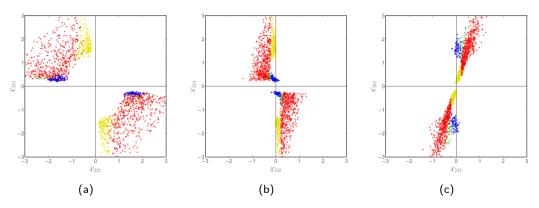
Parameter space

- $\bullet \ \ \mathsf{Parameters} \ (\lambda_{232},\lambda'_{233},\lambda'_{223},\lambda'_{232},m_{\widetilde{b}_{\mathrm{R}}},m_{\widetilde{b}_{\mathrm{L}}},m_{\widetilde{\nu}_{\tau}},m_{\widetilde{\tau}_{\mathrm{L}}})$
 - $\lambda_{232} = -\lambda_{322} \neq 0 \Leftarrow$ contribute to muon g-2, other λ_{3ij} couplings cannot be large at the same time due to the constraints of $\tau \to \mu\mu\mu$, $\mu \to e\gamma$ etc.
 - $\lambda'_{2ij} \neq 0 \Leftarrow \text{ include } \mu \text{ and free of } m_{\widetilde{\nu}_{\tau}}$.
 - $\lambda'_{3ij}=0$, otherwise combined with λ_{32k} or λ_{3k2} , well measured meson decays $(\overline{d}_id_j) \to \mu\ell_k$ or $\tau \to \mu K$ and $\tau \to \mu\eta$ decays will prevent λ'_{3ij} to be large.
 - $m_{\widetilde{ au}_{\mathrm{R}}}$ not involved with this choice of couplings.
 - $m_{\widetilde{t}_L}$ can only influence ${\rm BR}(B_s \to \mu^+ \mu^-)$ and the Wilson coefficients $(C_9')^\mu$ and $(C_{10}')^\mu$ that describe the $R_{K^{(*)}}$ anomaly. But we can assume a relatively larger value to make the influence small.

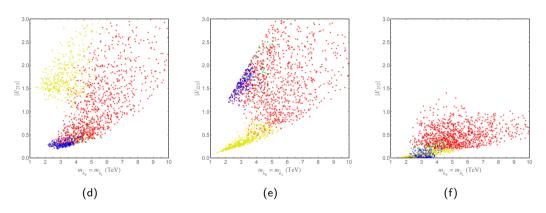
Parameter space

- 8-D parameter space $(\lambda_{232},\lambda'_{233},\lambda'_{223},\lambda'_{232},m_{\widetilde{b}_{\mathrm{R}}},m_{\widetilde{b}_{\mathrm{L}}},m_{\widetilde{\nu}_{\tau}},m_{\widetilde{\tau}_{\mathrm{L}}})$
 - $m_{\widetilde{b}_{\mathrm{B}}} = m_{\widetilde{b}_{\mathrm{L}}}$ for simplicity.
 - $m_{\widetilde{\tau}_L}$ has opposite contribution for $(g-2)_{\mu}$. The influence is not important as long as $m_{\widetilde{\tau}_L} \gtrsim O(2 \text{ TeV})$. Here we choose 4 TeV.
- \Rightarrow 6-D parameter space $(\lambda_{232}, \lambda'_{233}, \lambda'_{223}, \lambda'_{232}, m_{\widetilde{b}}, m_{\widetilde{\nu}_{\tau}})$
- In a sense, $(\lambda', m_{\widetilde{b}})$ and $(\lambda, m_{\widetilde{\nu}_{\tau}})$ are orthogonal in our scenario since $(\lambda, m_{\widetilde{\nu}_{\tau}})$ can only influence $(g-2)_{\mu}$ anomaly and 4-lepton constraint while on the other hand, $(\lambda', m_{\widetilde{b}})$ can only influence $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies and other constraints (The influence to $(g-2)_{\mu}$ is very small because $m_{\widetilde{b}}^2 \gg m_{\widetilde{\nu}_{\tau}}^2$ as we will see from Fig(d)(e)(g)).
- So, we can plot the constraints and anomalies in two 2-D spaces: $(\lambda', m_{\widetilde{b}})$ and $(\lambda, m_{\widetilde{\nu}_{\tau}})$

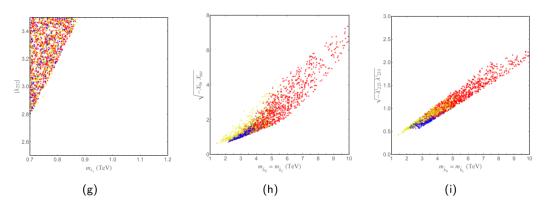
- $\begin{array}{l} \bullet \text{ We scan the 6-D parameter space} \\ (\lambda_{232},\lambda'_{233},\lambda'_{223},\lambda'_{232},m_{\widetilde{b}_{\mathrm{R}}}=m_{\widetilde{b}_{\mathrm{L}}},m_{\widetilde{\nu}_{\tau}},m_{\widetilde{\tau}_{\mathrm{L}}}=4 \text{ TeV}) \end{array}$
- $m_{\widetilde{\nu}_{\tau}} \in [0.7, 1.2]$ TeV (also tried $m_{\widetilde{\nu}_{\tau}} \in [1.2, 3]$ TeV but no solution found in this region)
- $|\lambda_{232}| \in [2.5, 3.5]$ (also tried $|\lambda_{232}| \in [1, 2.5]$ but no solution found in this region)
- $m_{\widetilde{b}} \in [1.2, 10] \text{ TeV}$
- $|\lambda'_{233}| \in [0.01, 3]$
- $|\lambda'_{223}| \in [0.01, 3]$
- $|\lambda'_{232}| \in [0.01, 3]$
- 30 million attempts ⇒ 1570 solutions (red+yellow+blue+green points)



- Separate to 3 characteristically regions according to Fig(c). Yellow: $|\lambda'_{232}| < 0.2$ and $|\lambda'_{223}| < 1$; Blue: $|\lambda'_{232}| < 0.2$ and $|\lambda'_{223}| > 1$; Red: $|\lambda'_{232}| > 0.2$ and $1.5 < \frac{\lambda'_{223}}{\lambda'_{232}} < 5.5$
- From Fig(c), Red: $\frac{\lambda'_{223}}{\lambda'_{322}} \sim 3 \Leftarrow B_s \overline{B}_s$ mixing. Green: crossover region from Red to Blue.
- Yellow+Blue: $|\lambda'_{232}|$ small or even zero. Fig(a-c): $|\lambda'_{233}\lambda'_{223}|$ small $\Leftarrow B_{s} = \overline{B}_{s}$ mixing.



- Fig(a-c): the absolute sign of λ' not important, only the relative sign matters.
- Fig(e): $\frac{|\lambda'_{223}|}{(m_{\tilde{k}}/1 \text{ TeV})} \lesssim 0.57 \Leftarrow D^0 \to \mu^+\mu^-$; Fig(d): $\frac{|\lambda'_{233}|}{(m_{\tilde{k}}/1 \text{ TeV})} \lesssim 1.0$
- \bullet \Rightarrow cannot contribute to $(g-2)_{\mu}$ much.
- Fig(h): $|\lambda'_{232}| \lesssim 1.5 \Leftarrow$ from Fig(c), $|\lambda'_{232}|$ is either small or $\sim |\lambda'_{223}|/3$



- Fig(g): Red, Yellow, Blue and Green points are totally mixed \Leftarrow Orthogonality of the two 2-D subspaces: $(\lambda, m_{\widetilde{\nu}_{\tau}})$ and $(\lambda', m_{\widetilde{b}})$.
- Fig(h) $\Leftarrow R_{K^{(*)}} \Leftarrow \lambda'_{233} \lambda'_{223} < 0 \Leftarrow \text{Fig(a)}$
- Fig(i): $\frac{\sqrt{-\lambda'_{223}\lambda'_{233}}}{(m_z/1\text{ TeV})} \sim (0.2, 0.28) \Leftarrow B \rightarrow K\nu\overline{\nu}$

- Fig(g) $\Rightarrow |\lambda_{232}| \gtrsim 2.78$
- Fig(g) $\Rightarrow 0.70 \text{ TeV} \lesssim m_{\widetilde{\nu}_{\tau}} \lesssim 0.87 \text{ TeV}$
- Fig(d) $\Rightarrow |\lambda'_{233}| \gtrsim 0.20$
- Fig(e) $\Rightarrow |\lambda'_{223}| \gtrsim 0.12$
- ullet Fig(f) $\Rightarrow |\lambda'_{232}|$ could be very small or even zero
- Fig(d-f) $\Rightarrow m_{\widetilde{b}} \gtrsim 1.44 \text{ TeV}$
- Fig(g) $\Rightarrow \frac{|\lambda_{232}|}{(m_{\tilde{\nu}_{\tau}}/1 \text{ TeV})} \gtrsim 4$; Fig(d) $\Rightarrow \frac{|\lambda'_{233}|}{(m_{\tilde{b}_R}/1 \text{ TeV})} \lesssim 1$; Fig(e) $\Rightarrow \frac{|\lambda'_{223}|}{(m_{\tilde{b}_R}/1 \text{ TeV})} \lesssim 0.57$. This means that the sneutrino term gives the

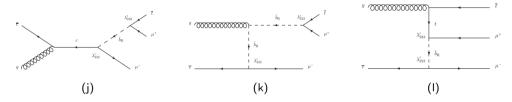
main contribution of muon (g-2) as one can see from Eq.(3).

Benchmark scenarios

- Density/number of the points in some region \propto the size of the allowed region of the parameter space.
- Three benchmark scenarios:
 - Red scenario (a subset of the Red region in the scatter plot): $\lambda'_{233} = -\lambda'_{223} = -3\lambda'_{232}, \ m_{\widetilde{b}_{\rm R}} = m_{\widetilde{b}_{\rm L}}, \ m_{\widetilde{\tau}_{\rm L}} = 4 \ {\rm TeV}. \ {\rm Fig(c)}: \ {\rm choose}$ $\lambda'_{223} = -3\lambda'_{232} \ {\rm to \ collect \ as \ many \ red \ points \ as \ possible}.$
 - Yellow scenario (a subset of the Yellow region in the scatter plot): $\lambda'_{233} = -8\lambda'_{223}, \ \lambda'_{232} = 0, \ m_{\widetilde{\tau}_L} = 4 \ {\rm TeV}.$ Fig(a): $\lambda'_{233} = -8\lambda'_{223}$ to collect as many yellow points as possible.
 - Blue scenario (a subset of the Blue region in the scatter plot): $\lambda'_{223} = -6\lambda'_{233}, \ \lambda'_{232} = 0, \ m_{\widetilde{\tau}_L} = 4 \ {\rm TeV}. \ {\rm Fig(a)}: \ \lambda'_{223} = -6\lambda'_{233} \ {\rm to \ collect \ as \ many \ blue \ points \ as \ possible}.$
 - * Red scenario, $\lambda'_{233} = -\lambda'_{223}$ for simplicity.
 - * Yellow & Blue scenario, $\lambda'_{232}=0$ for simplicity $\Rightarrow m_{\widetilde{b}_{\rm L}}, m_{\widetilde{t}_{\rm L}}$ will not appear.

Collider signals

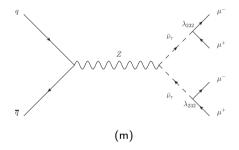
• Signal for $(\lambda', m_{\widetilde{b}})$ space: $pp \to \overline{t} \mu^+ \mu^-$



- $p_{\mathrm{T}}^{t,\mu} > 20$ GeV, $\mid \eta^{t,\mu} \mid < 2.5$, $\Delta R^{\mu\mu} > 0.4$ and $\Delta R^{t\mu} > 0.4$, $M_{\mu^+\mu^-} > 0.4$ TeV. Assume $\mathscr{L} = 3000 \; \mathrm{fb}^{-1}$. $\sqrt{s} = 14 \; \mathrm{TeV}, 27 \; \mathrm{TeV}, 100 \; \mathrm{TeV}$.
- Background small. $pp \to \bar{t}\mu^+\mu^- X$ (with $X=j,b,W^+ \to jj,W^+ \to \ell^+\nu_\ell$ not detected: $p_{\rm T}^{j,b,l} < 20$ GeV, $E_{\rm T}^{\rm miss} < 20$ GeV)
- $pp \to t \mu^+ \mu^-$ is similar but with a larger background.
- Only λ'_{233} , λ'_{223} and $m_{\widetilde{b}_{\rm R}}$ contribute to the signal. What can be probed are actually these parameters, a projection of the scenario.

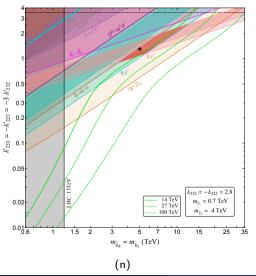
Collider signals

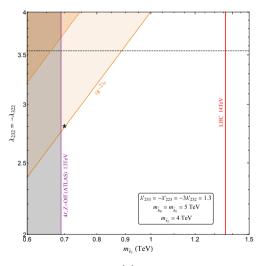
• Signal for $(\lambda, m_{\widetilde{\nu}_{\tau}})$ space: $pp \to \mu^+ \mu^- \mu^+ \mu^-$



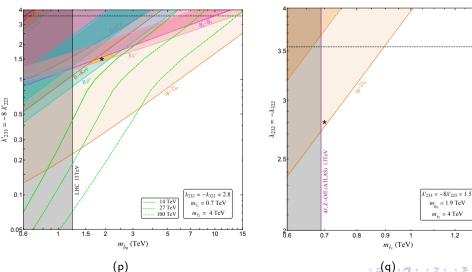
- $p_T^{\mu} > 25$ GeV, $|\eta^{\mu}| < 2.47$, $\Delta R^{\mu\mu} > 0.2$, $M_{\mu^{+}\mu^{-}} > 0.4$ TeV.
- Assume the mass of the lightest neutralino is 100 GeV for the calculation of the branching ratio of $\widetilde{\nu}_{\tau}$. BR $(\widetilde{\nu}_{\tau} \to \mu^{+}\mu^{-})$ is larger than 95% when $|\lambda_{232}| > 1.2$

Anomalies and constraints (Red scenario)



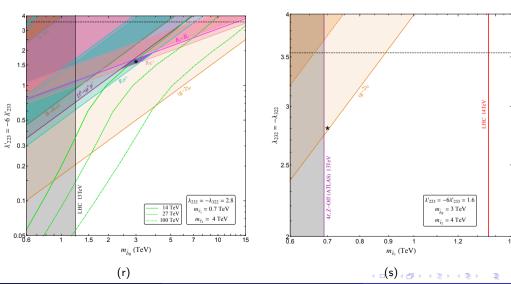


Anomalies and constraints (Yellow scenario)



1.2

Anomalies and constraints (Blue scenario)



Discussions

- The figure on the left uses the value of the black star in the figure on the right and vice versa.
- The cyan, pink and orange shaded regions with solid (dashed) boundaries explain the $R_{D^{(*)}}$, $R_{K^{(*)}}$ and $(g-2)_{\mu}$ anomalies at 3σ (2σ) CL respectively.
- The red, yellow and blue shaded regions are the overlap regions that simultaneously explain all the three anomalies correspond to the red, yellow and blue scenarios.
- The green solid, dashed and dot-dashed lines in Fig(n)(p)(r) are the 2σ sensitivities of the $\sqrt{s}=14$ TeV, 27 TeV and 100 TeV pp colliders in the $\bar{t}\mu^+\mu^-$ channel.
- These green curves bend downward at large λ' region because of the off-shell contribution of $pp \to \bar{t} \mu^+ \mu^-$ Fig(I).
- The red solid line in Fig(o)(q)(s) are the 2σ sensitivities of the LHC 14 TeV in the 4-muon channel.
- Fig(o)(q)(s) are quite similar. Consistent with Fig(g). Consequence of the orthogonality of the two subspaces $(\lambda, m_{\widetilde{\nu}_{\pi}})$ and $(\lambda', m_{\widetilde{h}})$

Discussions

- In the yellow and blue scenarios, we can allow a non-zero λ'_{232} (correspond to the yellow and blue points out of the vertical axis in Fig(b,c)). And this will make the $B_s-\overline{B}_s$ mixing constraint weaker and enlarge the allowed parameter space for $R_{K^{(*)}}$.
- We choose the black stars that are very close to the 3σ lower bound of $(g-2)_{\mu}$ in Fig(o)(q)(s) to show the dependence of $(g-2)_{\mu}$ from $(\lambda', m_{\widetilde{b}})$ in Fig(n)(p)(r). Otherwise, the 3σ lower bound of $(g-2)_{\mu}$ will disappear in Fig(n)(p)(r) because the contribution from \widetilde{b} is much smaller compared with $\widetilde{\nu}_{\tau}$.
- $B_s \to \mu^+\mu^-$ is always satisfied once $R_{K^{(*)}}$ is explained. Even if we take the extreme 3σ value, $|(C_{10})^\mu (C_{10}')^\mu| = 0.89$ (Altmannshofer, Stangl (arXiv:2103.13370)). This implies the RPV contribution $< 1.4 \times 10^{-10}$ (Becirevic, Fajfer, Kosnik (PRD 2015)) while the current experimental value is ${\rm BR}(B_s \to \mu^+\mu^-) = (3.0 \pm 0.4) \times 10^{-9}$
- The lower bound of $m_{\widetilde{\nu}_{\tau}}$ comes from the recast of the 4-lepton search of ATLAS (ATLAS-CONF-2021-011). The 4-lepton signal in our scenario comes from the pair production of $\widetilde{\nu}_{\tau}$ with $\widetilde{\nu}_{\tau} \to \mu^+ \mu^-$.

Summary

- We suggest that in RPV3 SUSY:
- A \widetilde{b} with mass $\sim 2-12$ TeV and non-zero couplings λ'_{233} , λ'_{223} and λ'_{232} could explain $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies at 3σ CL (especially even 1σ for $R_{K^{(*)}}$) while having a little bit contribution on $(g-2)_{\mu}$ anomaly due to the constraints of $B \to K^{(*)} \nu \overline{\nu}$, $B_s \overline{B}_s$ mixing etc.;
- A $\widetilde{\nu}_{ au}$ with mass $\sim 0.7-1$ TeV and non-zero coupling $|\lambda_{232}| \gtrsim 2.7$ could explain $(g-2)_{\mu}$ anomaly at 3σ CL.
- Both $(m_{\widetilde{b}},\lambda')$ and $(m_{\widetilde{\nu}_{\tau}},\lambda)$ parameter spaces are (partly) testable at HL-LHC through $\bar{t}\mu^+\mu^-$ or four muon signals.
- Due to the orthogonality between $(m_{\widetilde{b}}, \lambda')$ and $(m_{\widetilde{\nu}_{\tau}}, \lambda)$ in the sense of the solutions of anomalies, even if the $(m_{\widetilde{b}}, \lambda')$ solution is ruled out by the signal we proposed or future low energy constraints, the $(m_{\widetilde{\nu}_{\tau}}, \lambda)$ solution is still valid and vice versa.

Supplementary material

Backup

Choice of the couplings

- $(g-2)_{\mu} \Rightarrow$ candidates from Eq.(3): $\lambda_{312}, \lambda_{321}, \lambda_{322}, \lambda_{323}$ (λ'_{2k3} terms cannot contribute much). To get enough contribution, we have to let at least two λ couplings to be non-zero otherwise the magnitude of the λ need to be larger than $\sqrt{4\pi}$.
- \checkmark $\lambda_{322} \neq 0$, contributes two times for k=2 in Eq.(3)
- $\times \lambda_{323} \neq 0$, need to add another coupling to get enough contribution. But $\tau \to \overline{e}\mu\mu \Rightarrow \lambda_{323}\lambda_{312}$ small (propagator $\widetilde{\nu}_{\tau}$); $\tau \to e\mu\overline{\mu} \Rightarrow \lambda_{323}\lambda_{321}$ small (propagator $\widetilde{\nu}_{\tau}$); $\tau \to \mu\mu\overline{\mu} \Rightarrow \lambda_{323}\lambda_{322}$ small (propagator $\widetilde{\nu}_{\tau}$).
- ? $\lambda_{312} \neq 0$ and $\lambda_{321} \neq 0$, cannot let $\lambda_{322} \neq 0$ at the same time due to the constraint of $\mu \to e\gamma$
- \times $\lambda'_{3ij} \neq 0$ moreover, because $(\overline{d}_i d_j) \to \mu \overline{\mu} \Rightarrow \lambda_{322} \lambda'_{3ij}$ small (propagator $\widetilde{\nu}_{\tau}$).

Choice of couplings

- $R_{K^{(*)}} \Rightarrow \lambda'_{233} \lambda'_{223} \neq 0$ since $\lambda'_{3ij} \approx 0$ and $\lambda_{323} \approx 0$
- ullet \checkmark $\lambda'_{233}
 eq 0$ and $\lambda'_{223}
 eq 0$. Only choice of $R_{K^{(*)}}$, also contribute to $R_{D^{(*)}}$
- $\lambda'_{ij3} \neq 0$ and $\lambda'_{i3j} \neq 0$ may cause some troubles because $(\overline{u}_j c) \to \overline{e}_i \mu \Rightarrow \lambda'_{223} \lambda'_{ij3}$ (propagator $\widetilde{b}_{\mathrm{R}}$) e.g. $D^0 \to \mu^+ \mu^- \Rightarrow \frac{\lambda'_{213}}{m_{\widetilde{b}_{\mathrm{R}}}^2}$ small; $(\overline{d}_j b) \to \overline{e}_i \mu \Rightarrow \lambda'_{233} \lambda'_{i3j}$ (propagator $\widetilde{t}_{\mathrm{L}}$) e.g. $B_s \to \mu^+ \mu^- \Rightarrow \frac{\lambda'_{232}}{m_{\widetilde{t}_s}^2}$ small.
- In our case $\lambda'_{232} \neq 0$. But a small λ'_{232} may also be possible (but the cancellation term in $B_s \overline{B}_s$ mixing is zero) and λ'_{232} will contribute to $B_s \to \mu^+\mu^-$, $(C'_9)^\mu$ and $(C'_{10})^\mu$. But λ'_{232} do not have to be small and prefer the relation $\lambda'_{223} \approx 3\lambda'_{232}$.
- Now, non-zero couplings are chosen to be λ_{232} , λ'_{233} , λ'_{223} and λ'_{232} .

Background cross-section

- $pp \to t \mu^+ \mu^-$ has a larger background cross-section because the u content in proton is much larger than the \overline{u} content.
- We can look for $t\mu^+\mu^-$ or even combine both, but the result should be similar because the signal of $t\mu^+\mu^-$ is nearly the same as $\bar{t}\mu^+\mu^-$.

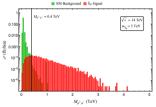
Table 1:
$$pp \to \bar{t}\mu^+\mu^- X$$
 cross sections (fb)

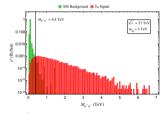
X	14 TeV	$M_{\mu^+\mu^-}>0.15~{ m TeV}$	27 TeV	$M_{\mu^+\mu^-} > 0.15~{ m TeV}$	100 TeV	$M_{\mu^+\mu^-}>0.15~{\rm TeV}$
j	0.381	3.35×10^{-3}	1.06	1.05×10^{-2}	5.83	7.11×10^{-2}
b	4.23×10^{-3}	3.64×10^{-5}	9.47×10^{-3}	9.85×10^{-5}	3.84×10^{-2}	3.92×10^{-4}
$W^+ \rightarrow jj$	3.76×10^{-3}	2.75×10^{-5}	1.49×10^{-2}	1.33×10^{-4}	0.133	1.58×10^{-3}
$W^+ \rightarrow e^+ \nu_e$	6.38×10^{-4}	5.68×10^{-6}	2.53×10^{-3}	2.68×10^{-5}	2.24×10^{-2}	2.28×10^{-4}
$W^+ \to \mu^+ \nu_{\mu}$	6.15×10^{-3}	2.67×10^{-3}	2.64×10^{-2}	1.12×10^{-2}	0.242	0.120
$W^+ \to \tau^+ \nu_{\tau}$	6.34×10^{-4}	6.09×10^{-6}	2.52×10^{-3}	3.08×10^{-5}	2.25×10^{-2}	2.81×10^{-4}
Total	0.396	6.10×10^{-3}	1.12	2.20×10^{-2}	6.29	0.194

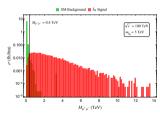
a
 $p_{\rm T}^{j,b,l}<20$ GeV, $E_{\rm T}^{\rm miss}<20$ GeV b $p_{\rm T}^{t,\mu}>20$ GeV, $\mid\eta^{t,\mu}\mid<2.5$

Invariant mass distribution (Red scenario)

- ullet For the process $pp o ar t \mu^+ \mu^-$
- Invariant mass $M_{\mu^+\mu^-}$ distributions at $\sqrt{s}=14~{\rm TeV}, 27~{\rm TeV}, 100~{\rm TeV}$



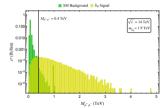


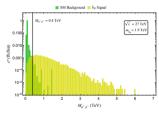


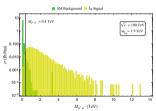
• We have used $\lambda'_{233} = -\lambda'_{223} = 1.3$, $m_{\tilde{b}_R} = 5 \text{ TeV}$ for the signal process (the black star in Fig(n)).

Invariant mass distribution (Yellow scenario)

- \bullet For the process $pp \to \bar t \mu^+ \mu^-$
- Invariant mass $M_{\mu^+\mu^-}$ distributions at $\sqrt{s}=14~{\rm TeV}, 27~{\rm TeV}, 100~{\rm TeV}$



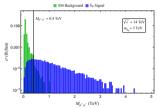


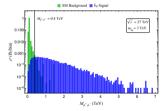


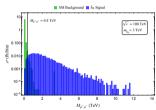
• We have used $\lambda'_{233} = -8\lambda'_{223} = 1.5$, $m_{\tilde{b}_R} = 1.9 \text{ TeV}$ for the signal process (the black star in Fig(p)).

Invariant mass distribution (Blue scenario)

- ullet For the process $pp o ar t \mu^+ \mu^-$
- Invariant mass $M_{\mu^+\mu^-}$ distributions at $\sqrt{s}=14~{\rm TeV}, 27~{\rm TeV}, 100~{\rm TeV}$







• We have used $\lambda'_{223} = -6\lambda'_{233} = 1.6$, $m_{\tilde{b}_R} = 3 \text{ TeV}$ for the signal process (the black star in Fig(r)).

Anomalies and constraints (Red scenario)

• Since many anomalies and constraints are independent of $(\lambda_{232}, m_{\tilde{\nu}_{\tau}})$, they become just numbers instead of curves in Fig(o).

Anomaly/Constraint	Quantities in Figure(m)	Experimental value/limit
$R_{D^{(*)}}$	$rac{R_{D^{(*)}}}{R_{D^{(*)}}^{ m SM}}=1.05$	1.15 ± 0.04
$R_{K^{(*)}}$	$(C_9)^{\mu} = -(C_{10})^{\mu} = -0.23$	-0.35 ± 0.08
$D^0 o \mu^+ \mu^-$	$BR(D^0 \to \mu^+ \mu^-) = 2.8 \times 10^{-10}$	$<7.6 imes 10^{-9}$ (95% CL)
$B \to K^{(*)} \nu \overline{\nu}$	$R_{B\to K^{(*)}\nu\overline{\nu}} = \frac{\text{BR}(B\to K^{(*)}\nu\overline{\nu})}{\text{BR}_{\text{SM}}(B\to K^{(*)}\nu\overline{\nu})} = 4.6$	< 5.2 (95% CL)
$B_s - \overline{B}_s$ mixing $\Delta M_{B_s} = (20.1 \pm 1.7) \; \mathrm{ps}^{-1}$		$(17.757 \pm 0.021) \text{ ps}^{-1}$
$B_s \to \mu^+ \mu^-$	$< 9.1 \times 10^{-12}$	$(3.0 \pm 0.4) \times 10^{-9}$

Anomalies and constraints (Yellow scenario)

• Since many anomalies and constraints are independent of $(\lambda_{232}, m_{\widetilde{\nu}_{\sigma}})$, they become just numbers instead of curves in Fig(q).

Anomaly/Constraint	Quantities in Figure(o)	Experimental value/limit
$R_{D^{(*)}}$	$rac{R_{D^{(*)}}^{SM}}{R_{D^{(*)}}^{SM}} = 1.04$	1.15 ± 0.04
$R_{K^{(*)}}$	$(C_9)^{\mu} = -(C_{10})^{\mu} = -0.13$	-0.35 ± 0.08
$D^0 o \mu^+\mu^-$	$BR(D^0 \to \mu^+ \mu^-) = 2.6 \times 10^{-12}$	$<7.6 imes 10^{-9}$ (95% CL)
$B \to K^{(*)} \nu \overline{\nu}$	$R_{B \to K^{(*)} \nu \overline{\nu}} = \frac{\text{BR}(B \to K^{(*)} \nu \overline{\nu})}{\text{BR}_{\text{SM}}(B \to K^{(*)} \nu \overline{\nu})} = 3.3$	< 5.2 (95% CL)
$B_s-\overline{B}_s$ mixing	$\Delta M_{B_s} = (22.4 \pm 1.7) \text{ ps}^{-1}$	$(17.757 \pm 0.021) \text{ ps}^{-1}$
$B_s \to \mu^+ \mu^-$	3.0×10^{-12}	$(3.0 \pm 0.4) \times 10^{-9}$

Anomalies and constraints (Blue scenario)

• Since many anomalies and constraints are independent of $(\lambda_{232}, m_{\tilde{\nu}_{\tau}})$, they become just numbers instead of curves in Fig(s).

Anomaly/Constraint	Quantities in Figure(q)	Experimental value/limit
$R_{D^{(*)}}$	$\frac{R_{D^{(*)}}}{R_{D^{(*)}}^{\rm SM}}=1.03$	1.15 ± 0.04
$R_{K^{(*)}}$	$(C_9)^{\mu} = -(C_{10})^{\mu} = -0.13$	-0.35 ± 0.08
$D^0 o \mu^+ \mu^-$	$BR(D^0 \to \mu^+ \mu^-) = 5.4 \times 10^{-9}$	$<7.6 imes 10^{-9}$ (95% CL)
$B \to K^{(*)} \nu \overline{\nu}$	$R_{B \to K^{(*)} \nu \overline{\nu}} = \frac{\text{BR}(B \to K^{(*)} \nu \overline{\nu})}{\text{BR}_{\text{SM}}(B \to K^{(*)} \nu \overline{\nu})} = 1.3$	< 5.2 (95% CL)
$B_s - \overline{B}_s$ mixing $\Delta M_{B_s} = (22.2 \pm 1.7) \ \mathrm{ps^{-1}}$		$(17.757 \pm 0.021) \text{ ps}^{-1}$
$B_s \to \mu^+ \mu^-$		$(3.0 \pm 0.4) \times 10^{-9}$