Searches for additional Higgs bosons in ATLAS

Adam Bailey, on behalf of the ATLAS collaboration 26/08, SUSY 2021

Introduction

- Many BSM theories predict extended Higgs sector
- Typically assume additional Higgs doublet: 2 Higgs Doublet Models (2HDM)
- Results in 2 CP even neutral, 1 CP odd neutral, 2 charged Higgs

- h or H could be the one observed at 125 GeV
 - Any BSM model must be compatible with this
- 2HDM includes SUSY scenarios (type-II), typically hMSSM
- Proposed SUSY benchmarks, M_h^{125} , $M_H^{125}(\chi)$ etc.
 - See Bahl, H., Fuchs, E., Hahn, T., et al.
- Other models (eg. 3HDM) extend to a Higgs triplet
 - Also gives doubly charged scalar Higgs

BSM Higgs Searches

- ATLAS Higgs searches include:
 - Heavy and light (< h₁₂₅ mass) cases
 - Charged and neutral
- General resonance searches can also apply to BSM Higgs from 2HDM
 - Talk by Shuo Han, resonance decays with I / γ final states
 (eg. X → γγ, X → ZZ → 4I / Ilνν)
 - Talk by Bill Balunas, searches for diboson decays of new particles (eg. X → bbττ, X → bbbb)
- Will focus on other recent ATLAS analyses with the full Run 2 dataset
- Also consider 2HDM+a models; add fermionic dark matter particle with pseudoscalar a that couples to both the SM and dark matter.
 See ATLAS-CONF-2021-036

Links to selection of recent 139 fb⁻¹ searches

$\underline{H^{\pm} \to cb}$	ATLAS-CONF-2021-037		
$X \rightarrow h_{125} h_{125} \rightarrow bbbb$	ATLAS-CONF-2021-035		
$X \rightarrow h_{125}h_{125} \rightarrow bb\tau\tau$	ATLAS-CONF-2021-030		
$\underline{H^{\pm\pm}} \to W^{\pm}W^{\pm}, \ H^{\pm} \to W^{\pm}Z$	<u>JHEP 06 (2021) 146</u>		
$H^{\pm} \rightarrow tb$	<u>JHEP 06 (2021) 145</u>		
$A \rightarrow ZH \rightarrow IIbb / IIWW$	EPJC 81, 396 (2021)		
$X \rightarrow ZZ \rightarrow 4I / IIvv$	EPJC, 81, 332 (2021)		
$X \rightarrow h_{125}h_{125} \rightarrow bbyy$	ATLAS-CONF-2021-016		
h ₁₂₅ → aa → bbµµ	ATLAS-CONF-2021-009		
$X \rightarrow VH \rightarrow qqbb$	Phys. Rev. D 102 112008 (2020)		
$h_{125} \rightarrow Za \rightarrow IIj$	Phys. Rev. Lett. 125, 221802 (2020)		
$A/H \rightarrow \tau \tau$	Phys. Rev. Lett. 125, 051801 (2020)		
h ₁₂₅ → aa → bbbb	Phys. Rev. D 102, 112006		
$A \rightarrow Zh_{125} \rightarrow Ilbb / vvbb$	ATLAS-CONF-2020-043		

$\mathsf{H}^{\mathtt{t}} \longrightarrow \mathsf{cb}$

- New 139 fb⁻¹ search for H[±] produced from $t \rightarrow bH^{\pm}$
- In 3HDM lightest H[±] can be lighter than t, can decay predominantly into cb: low mass H[±] search

- End up with 1 lepton, 3 b-jet, 1 c-jet final state
- Use single e/μ trigger, 20-26 GeV thresholds
 - Main background from tt + jets
- Categories based on number of jets and b-jets
 - Includes a 2 b-jet + 1 bl category, where one
 b-jet is allowed a looser b-tag requirement

H[±] → cb: Top Background

- SM tt + jets is the main background, modelled using simulation
- Does not completely reproduce jet multiplicity and $p_{\scriptscriptstyle T}$ distributions
- Therefore, use data-driven correction from 2b+1bl regions
 - The 1 borderline b-jet allows for a CR very close to the SR
 - Derive correction factor in each of 4/5/6 jet categories
- See modelling improve after correction is applied

H[±] → cb: MVA Techniques

- Use feed-forward NN, total of 30 variables
- Includes low level kinematics from lepton, E_T^{miss}, jets
- Also use b-tag scores of jets and di-jet invariant mass variables:
 - Sort jets according to b-tagging scores, 4th jet expected to be the c-jet
 - Calculate invariant mass of each jet with 4th jet
- Train on events with at least 4 jets with at least 3 b-tagged
- Parameterised as a function of H⁺ signal mass.

$H^{\pm} \rightarrow cb$: Results

- NN score used as discriminating variable, fit simultaneously across all signal regions
- 4 b-jet regions have limited stats or smaller signal contributions so only 1 bin is used
 - Also larger uncertainties here due to dominant tt+b background
- Upper limits set on B(t → H[±]b) × B(H[±] → cb),
 3HDM benchmarks shown

$H^{\pm} \rightarrow tb$

- Primary H⁺ decay mode for m(H⁺) > m(t)
- Result now with 139 fb⁻¹, update from <u>36 fb⁻¹ result</u>
- **Lepton + jets final states**, lepton trigger with 4 signal regions:
 - \circ 5j 3b, 5j ≥4b, ≥6j 3b, ≥6j ≥4b (XjYb = X jets found, Y of those b-tagged)
- Estimate backgrounds from simulation, dominated by top processes
- Require data based correction to tt+jets, measure data/MC in =5/=6/=7/≥8j 2b regions
 - \circ Events weighted by the product of N_{jets} (left) and Σ p_T (jets, l) (centre)

H[±] → tb: MVA Technique

- Uses MVA discriminant in each category
- Now uses Keras NN, parameterised as a function of H⁺ signal mass
 Train all signals against all backgrounds, total of 15 variables used
 - Used BDTs in previous analysis

 Classifier output used as discriminating variable, perform statistical fit simultaneously in the 4 signal regions

$H^{\pm} \rightarrow tb$: Results

- Main systematics related to tt background modelling, jet flavour tagging, jet energy scale and resolution. Consider effect on both normalisation and shape
- Results now include exclusions on M_h^{-125} models, most sensitive channel for low tan β

- Low mass dominated by systematics
- At high mass see improvement beyond that expected from scaling integrated luminosity. Comes from MVA, tighter lepton triggers, and b-tagging updates

$H^{\pm\pm} \longrightarrow W^{\pm}W^{\pm}$ and $H^{\pm} \longrightarrow W^{\pm}Z$

- Doubly charged H arise in Type II seesaw models
 - With non-zero neutrino mass, H^{±±} predominantly decay to WW and leptonic decays suppressed
- Final states of leptons, MET and jets. Use categories based on leptons: 2l (++), 3l (++-), 4l (++-- or +++-)
 - Preselection based on E_T^{miss}, N_{iets}, N_{b-jets} for the 3 channels
- Added H^{±±} H[±] production channel since 36 fb⁻¹ result
- Target two production modes where H^{±±} decays predominantly to W[±]W[±]:

- Main backgrounds:
 - o **SM WZ**: MC estimate with scale factor correction from data
 - Non-prompt leptons: data-driven fake factor method in 2l 3l.
 4l uses MC + scale factor measured from data (due to low stats)
 - Electron charge-flip: measure flip prob. from data in large Zee sample, apply to SR-like region but with opposite sign leptons
- Validate in preselection region, examples on right

$H^{\pm\pm} \longrightarrow W^{\pm}W^{\pm}$, $H^{\pm} \longrightarrow W^{\pm}Z$: Selection

- Final selection adds requirements on invariant mass of jets/leptons, angular variables, E_T^{miss}, p_T
- SR for each N leptons category **further split into subregions for each signal mass**
 - Selection is optimised for each N leptons and signal mass
- Systematics considered for each background source, summarised in left plot
- Right plot shows obtained yields in each category

Relative uncertainty

$H^{\pm\pm} \longrightarrow W^{\pm}W^{\pm}$, $H^{\pm} \longrightarrow W^{\pm}Z$: Results

Separate profile likelihood test for each signal mass, combine 2/3/4 l
 categories

• Tighter limits obtained for H^{±±} pair production channel. Has higher branching fraction, and analysis was optimised to target that mode

$X \rightarrow h_{125}^{} h_{125}^{} \rightarrow bb\gamma\gamma$

- Search for new spin-0 scalar decaying to h₁₂₅ pair
 - Applicable to models with additional Higgs (eg. 2HDM)
- Combine high-rate to bb with clean yy signal
- Includes both resonant and non-resonant search
 - Focus on resonant search in this talk, several mass hypotheses tested
- Common pre-selection:
 - γγ trigger, 2 high quality γ, e/μ veto, 2 to 5 central jets of which 2 are b-tagged
- Main background in resonant channel from γγ + jets
- Use $m_{bbyy}^* = m_{bbyy}^* m_{bb}^* m_{yy}^* + 250 \text{ GeV}$
 - Improves resolution and provides cancellation of experimental resolution effects, see top plot
- Lower plot shows events after preselection

g unimproved g

$X \rightarrow h_{125}h_{125} \rightarrow bb\gamma\gamma$: MVA

- Train **2 BDTs** for resonant search, one for yy and ttyy, other for single H
 - Reweight signal to match m* bbvv of background
 - Gives training independent of signal mass
 - Scores combined in quadrature:

$$BDT_{tot} = \frac{1}{\sqrt{C_1^2 + C_2^2}} \sqrt{C_1^2 \left(\frac{BDT_{\gamma\gamma} + 1}{2}\right)^2 + C_2^2 \left(\frac{BDT_{Single}H + 1}{2}\right)^2}$$

- Select events within 2σ of expected mean m^{*}_{bbyy} (4σ for 900, 1000 GeV), cut on combined BDT score
- Cut value and coefficients optimised to maximise significance

- Right plot shows events after BDT selection, used to illustrate background composition
- Overall continuum normalised to sidebands

$X \rightarrow h_{125}h_{125} \rightarrow bb\gamma\gamma$: Results

- Extract signal and background by fitting analytic functions to m_{vv}
- Continuum yy background fit from high-stats MC template, normalised to data sidebands (105 to 120 and 130 to 160 GeV)
 - Include dedicated systematic for spurious signal: measure bias for choice of given functional form
 - Dominant background is γγ + jets
- Then perform maximum likelihood fit in search m_{vv}
- This analysis particularly sensitive to low mass X to di-Higgs, due to low mass γγ trigger and γ resolution

Summary

- Many results available with the full Run 2 dataset
- Benefit from larger dataset, but also have other improvements:
 - MVA techniques, parameterised NN becoming common
 - Updated reconstruction algorithms
 - New analysis methods
- Results in direct searches set stringent limits on models with extended Higgs sectors
 - See limits from $H \to \tau \tau$ and $H^{\pm} \to tb$ on the top plot
 - But, also exploring many other signatures, including H → h₁₂₅h₁₂₅, see bottom plot
- No significant excess seen so far
- More results available on <u>HDBSPublicResults</u> page

Backup

Backup: 2HDM

- Commonly see Type-II used in BSM H searches, but others are being explored
 - Type-I: all fermions couple to only one Higgs doublet
 - Type-II: down-type quarks and leptons couple to different doublet than up-type quarks
 - Lepton-specific: quarks to one doublet, leptons to other
 - Flipped: up-type quarks and leptons couple to different doublet than down-type quarks
 - o Type-III: quarks and leptons couple to both doublets can have FCNC

Backup: $H^{\pm} \rightarrow tb$, NN output in other signal regions

Backup: H[±] → tb, Systematics

Systematics on Tt + jets background

Uncertainty source	Description		Components
$t\bar{t}$ cross-section	Up or down by 6%	$t\bar{t} + ext{light}$	
$t\bar{t}$ reweighting	Statistical uncertainties of fitted funct	All $t\bar{t}$ and Wt	
$t\bar{t} + \geq 1b$ modelling	4FS vs. 5FS	$t\bar{t}$ + $\geq 1b$	
$t\bar{t} + \geq 1b$ normalisation	Free-floating	$t\bar{t}$ $+ \ge 1b$	
$t\bar{t} + \geq 1c$ normalisation	Free-floating		$t\bar{t}$ + $\geq 1c$
NLO matching	MADGRAPH5_aMC@NLO+PYTHIA	vs. PowhegBox+Pythia	All $tar{t}$
PS & hadronisation	PowhegBox+Herwig	vs. PowhegBox+Pythia	All $tar{t}$
ISR	Varying $\alpha_{ m S}^{ m ISR}$	in PowhegBox+Pythia	All $tar{t}$
$\mu_{ m f}$	Scaling by 0.5 (2.0) in PowhegBox+Pythia		All $tar{t}$
$\mu_{ m r}$	Scaling by 0.5 (2.0) in PowhegBox+Pythia		All $tar{t}$
FSR	Varying $\alpha_{\rm S}^{\rm FSR}$	in PowhegBox+Pythia	All $tar{t}$

Backup: H[±] → tb, Systematics

• Uncertainties on $\mu = \sigma(pp \rightarrow tbH^{\pm}) \times B(H^{\pm} \rightarrow tb)$

Uncertainty source	$\Delta\mu(H_{200}^+)~[\mathrm{pb}]$	$\Delta\mu(H_{800}^+)~[\mathrm{pb}]$
$t\bar{t} + \geq 1b \text{ modelling}$	1.01	0.025
Jet energy scale and resolution	0.35	0.009
$t\bar{t} + \geq 1c \text{ modelling}$	0.32	0.006
Jet flavour tagging	0.20	0.025
Reweighting	0.22	0.007
$t\bar{t}$ + light modelling	0.33	0.009
Other background modelling	0.19	0.011
MC statistics	0.11	0.008
JVT, pile-up modelling	< 0.01	0.001
Luminosity	< 0.01	0.002
Lepton ID, isolation, trigger, $E_{\mathrm{T}}^{\mathrm{miss}}$	< 0.01	< 0.001
H^+ modelling	0.05	0.002
Total systematic uncertainty	1.35	0.049
$t\bar{t} + \geq 1b$ normalisation	0.23	0.007
$t\bar{t} + \geq 1c$ normalisation	0.045	0.015
Total statistical uncertainty	0.43	0.025
Total uncertainty	1.42	0.055
101		

Backup: $H^{\pm} \rightarrow tb$, Other M_h^{125} Limits

Backup: $H^{\pm \pm} \rightarrow W^{\pm}W^{\pm}$, $H^{\pm} \rightarrow W^{\pm}Z$ Preselection

Selection criteria	$2\ell^{ m sc}$	3ℓ	4ℓ	
At least one offline tight lepton with $p_{\rm T}^\ell > 30{\rm GeV}$ that triggered the event				
N_{ℓ} (type L)	=2	=3	=4	
N_{ℓ} (type L*)	_	_	=4	
N_{ℓ} (type T)	=2	$\geq 2 \ (\ell_{1,2})$	≥1	
$ \sum Q_\ell $	=2	=1	$\neq 4$	
Lepton $p_{\rm T}$	$p_{\rm T}^{\ell_1,\ell_2} > 30,20{\rm GeV}$	$p_{\rm T}^{\ell_0,\ell_1,\ell_2} > 10, 20, 20 \text{GeV}$	$p_{\rm T}^{\ell_1,\ell_2,\ell_3,\ell_4} > 10 {\rm GeV}$	
$E_{ m T}^{ m miss}$	$> 70\mathrm{GeV}$	$> 30\mathrm{GeV}$	$> 30\mathrm{GeV}$	
$N_{ m jets}$	≥ 3	≥ 2 —		
$N_{b ext{-jets}}$	=0			
Low SFOC $m_{\ell\ell}$ veto	_	$m_{\ell\ell}^{ m oc} > 15{ m GeV}$		
${\cal Z}$ boson decay veto	$\left m_{ee}^{\rm sc} - m_Z \right > 10 \text{GeV}$	$ m_{\ell\ell}^{\rm oc} - m_Z > 10{\rm GeV}$		

Backup: $H^{\pm \pm} \longrightarrow W^{\pm}W^{\pm}$, $H^{\pm} \longrightarrow W^{\pm}Z$ Final Selection

Charged Higgs boson mass	$m_{H^{\pm\pm}} = 200 \text{GeV}$	$m_{H^{\pm\pm}} = 300 \text{GeV}$	$m_{H^{\pm\pm}} = 400 \text{GeV}$	$m_{H^{\pm\pm}} = 500 \text{GeV}$
Selection criteria	$2\ell^{\rm sc}$ channel		,	,
$m_{\rm jets} \; [{\rm GeV}]$	[100, 450]	[100, 500]	[300, 700]	[400, 1000]
S	< 0.3	< 0.6	< 0.6	< 0.9
$\Delta R_{\ell^{\pm}\ell^{\pm}}$	<1.9	<2.1	<2.2	< 2.4
$\Delta\phi_{\ell\ell,E_{ m T}^{ m miss}}$	< 0.7	< 0.9	<1.0	<1.0
$m_{x\ell}$ [GeV]	[40, 150]	[90, 240]	[130, 340]	[130, 400]
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	>100	>130	>170	>200
Selection criteria	3ℓ channel		•	,
$\Delta R_{\ell^{\pm}\ell^{\pm}}$	[0.2, 1.7]	[0.0, 2.1]	[0.2, 2.5]	[0.3, 2.8]
$m_{x\ell}$ [GeV]	>160	>190	>240	>310
$E_{\rm T}^{\rm miss}$ [GeV]	>30	>55	>80	>90
$\Delta R_{\ell m jet}$	[0.1, 1.5]	[0.1, 2.0]	[0.1, 2.3]	[0.5, 2.3]
$p_{\mathrm{T}}^{\mathrm{leading\ jet}}$ [GeV]	>40	>70	>100	>95
Selection criteria	4ℓ channel			
$m_{x\ell}$ [GeV]	>230	>270	>360	>440
$E_{\rm T}^{\rm miss}$ [GeV]	>60	>60	>60	>60
$p_{\mathrm{T}}^{\ell_1} \; [\mathrm{GeV}]$	>65	>80	>110	>130
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{ m min}$	[0.2, 1.2]	[0.2, 2.0]	[0.5, 2.4]	[0.6, 2.4]
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\mathrm{max}}$	[0.3, 2.0]	[0.5, 2.6]	[0.4, 3.1]	[0.6, 3.1]

Backup: $X \rightarrow h_{125}h_{125} \rightarrow bb\gamma\gamma$, resonant BDT

Variable	Definition		
Photon-related kinematic variable	les		
$p_{\mathrm{T}}^{\gamma\gamma}, y^{\gamma\gamma}$	Transverse momentum and rapidity of the di-photon system		
$\Delta\phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$	Azimuthal angular distance and ΔR between the two photons		
Jet-related kinematic variables			
$m_{b\bar{b}}, p_{\mathrm{T}}^{b\bar{b}}$ and $y_{b\bar{b}}$	Invariant mass, transverse momentum and rapidity of the <i>b</i> -tagged jets system		
$\Delta\phi_{bar{b}}$ and $\Delta R_{bar{b}}$	Azimuthal angular distance and ΔR between the two b -tagged jets		
$N_{\rm jets}$ and $N_{b-{\rm jets}}$	Number of jets and number of b-tagged jets		
$H_{ m T}$	Scalar sum of the p_T of the jets in the event		
Photons and jets-related kinemat	tic variables		
$m_{bar{b}\gamma\gamma}$	Invariant mass built with the di-photon and b-tagged jet system		
$\Delta y_{\gamma\gamma,b\bar{b}}, \Delta\phi_{\gamma\gamma,b\bar{b}}$ and $\Delta R_{\gamma\gamma,b\bar{b}}$	Distance in rapidity, azimuthal angle and ΔR between di-photon and the b -tagged jets system		

Backup: $X \rightarrow h_{125}h_{125} \rightarrow bb\gamma\gamma$ Systematics

		Relative impact of the systematic uncertainties in %		
Source	Type	Non-resonant analysis <i>HH</i>	Resonant analysis $m_X = 300 \text{ GeV}$	
Experimental				
Photon energy scale	Norm. + Shape	5.2	2.7	
Photon energy resolution	Norm. + Shape	1.8	1.6	
Flavor tagging	Normalization	0.5	< 0.5	
Theoretical				
Heavy flavor content	Normalization	1.5	< 0.5	
Higgs boson mass	Norm. + Shape	1.8	< 0.5	
PDF+ α_s	Normalization	0.7	< 0.5	
Spurious signal	Normalization	5.5	5.4	

Backup: H/A $\rightarrow \tau \tau$ Search

- ATLAS full Run 2 result with 139 fb⁻¹ from July 2020
- MSSM with high tan β enhances couplings to τ and b
- $\tau_{lep} \tau_{had}$ (e/ μ trigger) and $\tau_{had} \tau_{had}$ (τ trigger) channels
 - Each split into b-veto and b-tag category
- BDT to distinguish jet from τ, or e/μ from τ
 - Improved τ/jet BDT over 36 fb⁻¹ result, better multijet rejection
- Also improvements in background modelling

h/H/A

h/H/A

Backup: $H/A \rightarrow \tau \tau$ Results

• Set limits on σ x B, and new M_h^{125} scenarios (hMSSM and other M_h^{125} variations included in aux. material)

