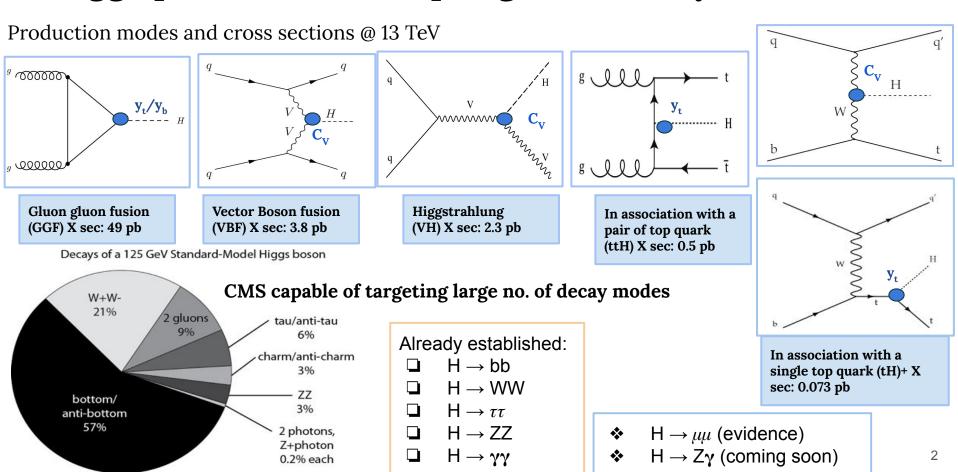


Higgs boson measurements at CMS

Soumya Mukherjee, TIFR, Mumbai, India soumya.mukherjee@cern.ch

On behalf of


CMS Collaboration, LHC, CERN.

27 August, 2021

The XXVIII International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2021)

Higgs productions, couplings and decays at the LHC

Higgs searches at the LHC

Run-1: \sqrt{s} =7, 8 TeV $\int L dt = 5 \text{ fb}^{-1}$, 19 fb⁻¹

- → Discovery of Higgs bosons
- → Measurement total cross sections in different modes
- → Characterization: mass, spin, coupling with vector bosons

Run-2: 13 TeV, $\int L dt = 137 \text{ fb}^{-1}$

- → two fold gain
 - (i) increase in Higgs cross section
 - (ii) higher luminosity helps to probe and establish rarer decays
- → Precision measurement of Higgs properties (mass, couplings)
- → Differential cross sections
- ⇒ Use Higgs as a probe for new physics.

Couplings with Vector bosons (V):

$$C_V \propto rac{M_V^2}{v}$$

 $C_V \propto rac{M_V^2}{v}$ Couplings with fermions (f): $y_f \propto rac{m_f}{v}$

Measurement of Higgs couplings in

 κ - framework (κ_{V} , κ_{t} , κ_{h} , κ_{v} ,) κ = (Observed Higgs coupling)/

(Standard Model predicted value) $\kappa = 1 \Rightarrow \text{Standard Model (SM)}$

Signal strength $(\mu) = (\sigma * \mathcal{B}r)^{\text{obs}} / (\sigma * \mathcal{B}r)^{\text{SM}}$

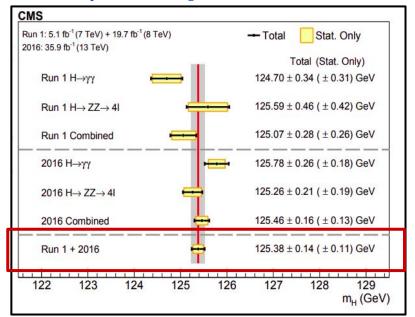
H CP study

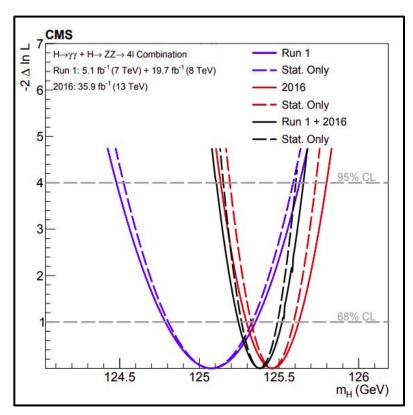
Differential cross

HH (H - self coupling)

Common strategy for CMS analyses:

(i) Multivariate analysis techniques based on **boosted decision trees (BDT)** or, **Deep Neural Network (DNN)** to discriminate signals from backgrounds (ii) Events categorized to achieve best sensitivity.


Combined Higgs mass measurement

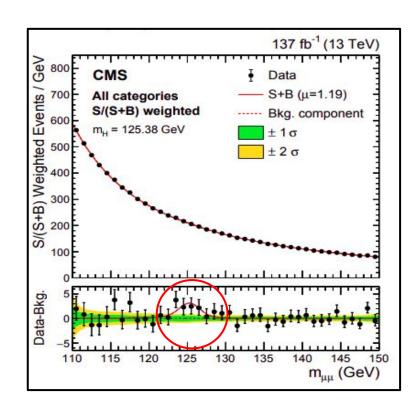

Combination of 2 high resolution channels: $H \rightarrow \gamma \gamma$ with $H \rightarrow ZZ^* \rightarrow 4l$

using 2016 data (~36/fb) and Run-1 data (~25/fb)

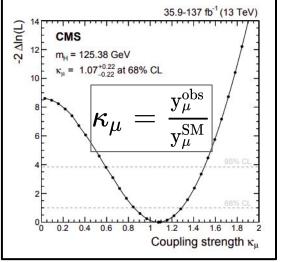
$$m_{\rm H}$$
 = 125.38± 0.11 (stat) ± 0.08 (sys) GeV

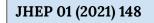
- \rightarrow total uncertainty ~ 0.21%, dominated by stat (0.14%).
- → currently the most precise measurement

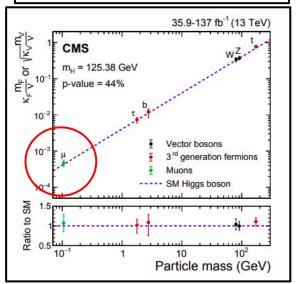
$H \rightarrow \mu\mu$ study using full Run-2 data


Experimental confirmation of $H \rightarrow \mu\mu$ decay is crucial to establish Higgs interaction with 2nd generation fermions.

But extremely low branching fraction: 2.18 * 10⁻⁴

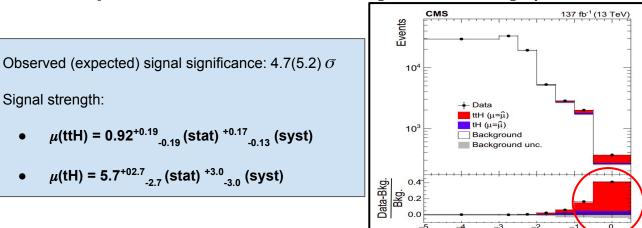

- → requires high luminosity
- → used complete Run-2 data
- → Targets all production modes
- → overwhelming continuum background from **Drell-Yan**

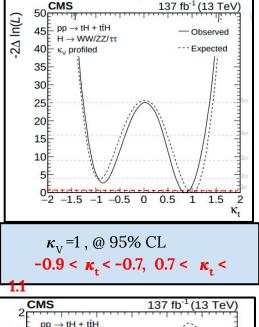

Signal extraction:

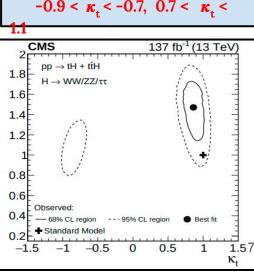

- → VBF categories by performing template fit of DNN output score.
- \rightarrow For other production modes (ggH, VH, ttH), by fitting dimuon invariant mass (m_{,,,,}) spectrum

- \rightarrow First evidence of H $\rightarrow \mu\mu$ process at the LHC
- \rightarrow Observed (expected) signal significance: **3.0** (2.5) σ
- → Signal strength $\mu = 1.19^{+0.44}$ @68%
- \rightarrow Observed best fit value of $\mathbf{\kappa}_{\mu}$: 1.07 $^{+$ 0.29 $_{-0.15}$ @ 68% CL
- \rightarrow Most constrained measurement of κ_{μ} till date.

ttH + tH: multilepton study

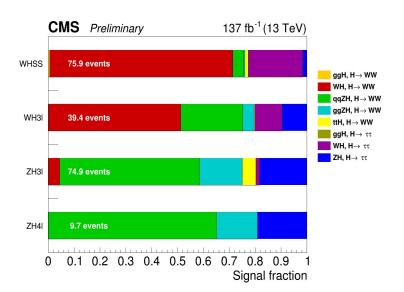

EPJC 81 (2021) 378

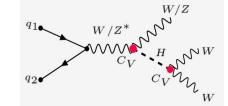

> ttH: probe magnitude of top Yukawa coupling (y_t)

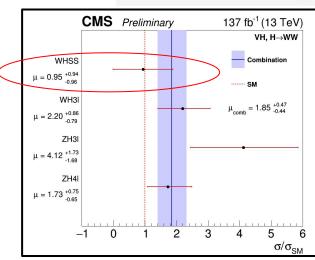

tH: provides the sign of y_t wrt C_v

- Categories based on flavour and number of final state leptons (L: e, μ , hadronic tau τ_h)
 - (i) H \rightarrow WW : In final state: **2L SS** + $0\tau_h$, 3L SS + $0\tau_h$, 4L SS + $0\tau_h$
 - (ii) H \rightarrow ZZ : In final state 3L + $0\tau_h$, 4L + $0\tau_h$
 - (ii) $H \rightarrow ZZ$: In final state $3L + 0\tau_h$, $4L + 0\tau_h$ (iii) $H \rightarrow \tau\tau$: In final state 2L SS + $1\tau_h$, $0L + 2\tau_h$, $1L + 1\tau_h$, $1L + 2\tau_h$, $2L + 2\tau_h$ SS: same sign \rightarrow reduced background by large factor
- DDT output good used for the outpostion of signal for each estagony

BDT output score used for the extraction of signal for each category



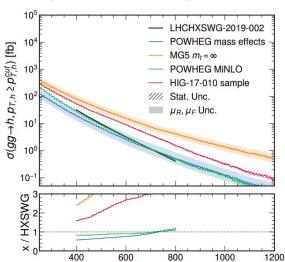



VH (V = W/Z), H \rightarrow WW to multileptons

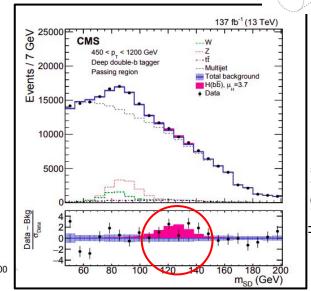
- Pure process for probing H coupling to vector bosons (C_v)
- Events with at least one leptonically decaying W in e/μ modes.
- Final states marked by number, charge and flavour of leptons
- WH same-sign (SS) lepton category has the best sensitivity
 → compatible with SM

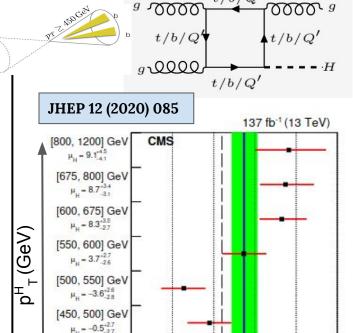
CMS PAS HIG-19-017

Observed signal significance: 4.7σ Signal strength:


$$\mu = 1.85^{+0.33}_{-0.32} \text{(stat)} + 0.25_{-0.25} \text{(syst)} + 0.10_{-0.07} \text{(theo)}$$

Inclusive boosted Higgs production and decay to bb


 \Box Suitable to measure Hbb Yukawa coupling (y_b)


 \Box High end p_{T}^{H} can resolve loop-induced contributions to the ggH

process from new particles

pcut [GeV]

Analysis strategy:

> Serious background from tt production, controlled by

- → missing transverse energy < 140 GeV
- → lepton veto, no b-jets in opposite hemisphere

Signal extraction by fitting jet mass distribution

Obs. (exp.) signal significance: 2.5 (0.7) σ Signal strength:

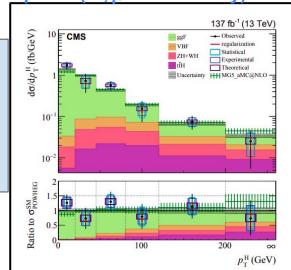
$$\mu = 3.7^{+1.2}_{-1.2} \text{(stat)}^{+0.6}_{-0.7} \text{(syst)}^{+0.8}_{-0.5} \text{(theo)}$$

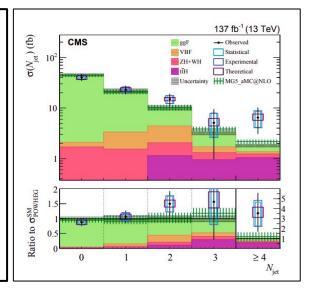
10

Simplified template cross section (STXS)

- ❖ Increased luminosity of Run-2 → probe BSM using H measurement as a tool
- Fine-grained measurements for individual or inclusive Higgs production modes in various kinematic regions
- \bullet Differential distributions in p_{T}^{H} , njets, ...
- Minimizing theory dependence
- Maximizing experimental sensitivity
- **♦** Used as common framework in all decay modes → optimum for combined interpretation

Inclusive production of H+X \rightarrow WW* \rightarrow leptons (e[±], μ [±] modes only)

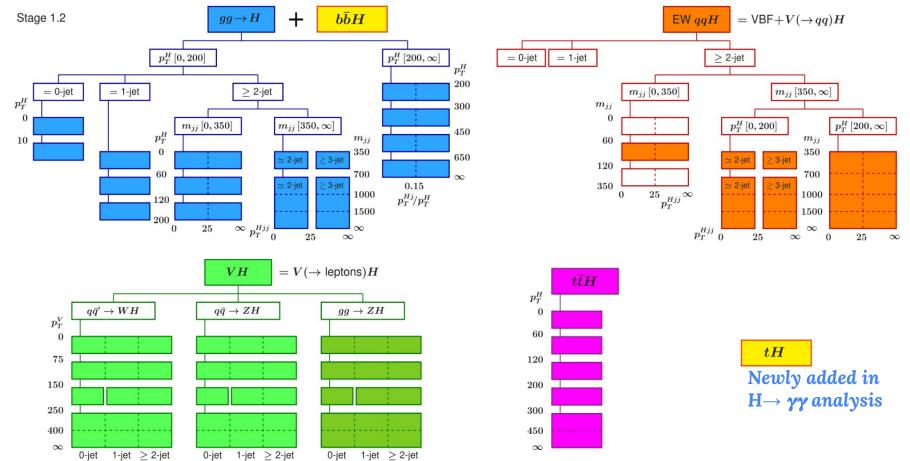

stage: 1.0


Signal strength:

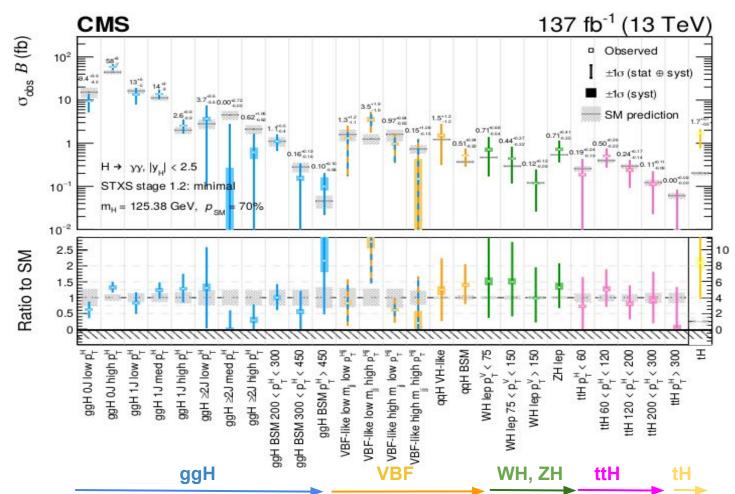
 $\mu = 1.05 \pm 0.05 \text{ (stat)} \pm 0.07 \text{ (exp)}$ $\pm 0.01 \text{ (signal)} \pm 0.07 \text{ (bkg)} \pm 0.03 \text{ (lumi)}$

Measured cross section: 86.5 ± 9.5 fb

SM prediction: 82.5 ± 4.2 fb



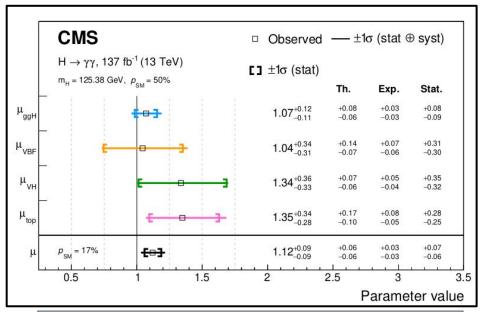
STXS analysis for $H \rightarrow \gamma \gamma$


0-jet

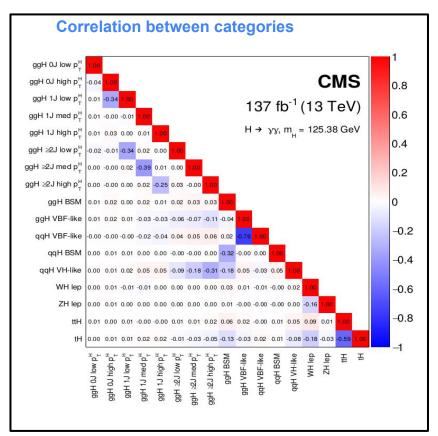
0-jet

arXiv: 2103.06956 Accepted by JHEP

STXS study for $H \rightarrow \gamma \gamma$



arXiv: 2103.06956
Accepted by JHEP


Decent sensitivity for STXS bins in all production modes

Results of STXS study of $H \rightarrow \gamma \gamma$ study

arXiv: 2103.06956
Accepted by JHEP

Measured signal strength $\mu: 1.12^{+0.06}_{-0.06} \text{(theo)} ^{+0.03}_{-0.03} \text{(syst)} ^{+0.07}_{-0.06} \text{(stat)}$

Summary

- CMS continues to explore various aspects of Higgs physics from abundant to rare decay modes.
- The standard model predicted H interaction with lower mass particles are coming into view:
- First evidence of $H \rightarrow \mu\mu$
- Exploring more detailed kinematic regions to probe BSM from STXS study (recently in $H \rightarrow \gamma\gamma$)
- ☐ Understanding of Higgs potential from HH studies are also being carried in various final states:

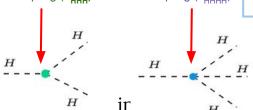
What's next?

- Even after 2.5 years of completing Run-2 data taking, analyses not yet over in several fronts of Higgs → stay tuned!
- ☐ Continue precision measurements
- ☐ Focus to establish other rare processes
- ☐ Rigorous searches for BSM signature
- ☐ More interesting physics results and bold understandings will come in next run.

HH searches in CMS

Higgs potential:
$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$

Expanding about the minimum: $V(\phi) = -V(v + h)$


$$V = V_0 + \frac{1}{2} m_h^2 h^2 + \frac{m_h^2}{2 v^2} v h^3 + \frac{1}{4} \frac{m_h^2}{2 v^2} h^4$$

$$\text{Higgs mass term} \quad \text{Tri-linear Higgs self coupling } (\lambda_{\text{HHH}}) \quad \text{self coupling } (\lambda_{\text{HHHH}})$$

- ♦ HH decay modes being explored using full Run2 (137 fb⁻¹) data:
- Modes with large branching ratios (BR) utilized for at least one of the H decays :
 - > bb (58%) and WW*(21%)
- * HH \rightarrow 4b , bb $\tau\tau$, bb $\gamma\gamma$, bbWW, bbZZ, 4W, WW $\tau\tau$, 4 τ , WW $\gamma\gamma$

$$egin{aligned} ext{In SM}: \ \lambda_{ ext{HHH}} = \lambda_{ ext{HHHHH}} = rac{ ext{m}_{ ext{H}}^2}{2 ext{v}^2} = 0.13 \end{aligned}$$

Leads to EWK symmetr

- nasses of other standard model particles
- Measuring λ important because it probes the shape of the Higgs potential
- HH production at the LHC provides access to $\lambda : \rightarrow$ **Detailed talk by Lata Panwar**