Z POLARIZATION AS A PROBE OF ANOMALOUS GAUGE-HIGGS COUPLING

Priyanka Sarmah¹
In collaboration with Kumar Rao¹ and Saurabh D. Rindani²

¹IIT Bombay, Mumbai, ²Physical Research Laboratory, Ahmedabad, India

August 27, 2021

PLAN OF THE TALK

- Motivation of the work
- ► Spin Density Matrix
- ► Helicity Amplitudes for the process
- Asymmetries and Sensitivities
- Summary

MOTIVATIONS OF THE WORK

- Precise measurement of the couplings of the Higgs to electroweak gauge bosons is needed to uncover the exact mechanism of EWSB.
- ► Apart from the usual observables namely total cross section, angular distribution, observables like spin polarizations can provide deeper insight into underlying physics.
- ► Focus is to use the information contained in the polarization of EW gauge bosons to study its coupling to Higgs, using spin density matrix formalism.

GOAL OF THE WORK

▶ Study anomalous ZZH vertex in the associated ZH production at the e^+e^- and LHC using the Z polarization observables

FIGURE: Feynman diagram for ZH production.

where the vertex $Z_{\mu}(k_1) \to Z_{\nu}(k_2)H$ takes the following Lorentz invariant structure

$$\Gamma^{V}_{\mu\nu} = \frac{g_w}{\cos\theta_w} m_z \left[a_z g_{\mu\nu} + \frac{b_z}{m_z^2} \left(k_{1\nu} k_{2\mu} - g_{\mu\nu} k_1 . k_2 \right) + \frac{\tilde{b}_z}{m_z^2} \epsilon_{\mu\nu\alpha\beta} k_1^{\alpha} k_2^{\beta} \right]$$

The form factors a_z , b_z and \tilde{b}_z are in general complex. The first two couplings would correspond to CP-even terms in the interaction, while the third term is odd under CP.

FORMALISM

Polarization Parameters of Z boson

The 2×2 density matrix for spin-1/2 system-

$$\rho = \frac{1}{2}I + \frac{1}{2}\mathcal{P}.\sigma$$

where the Pauli matrices σ serve the basis for this expansion and \mathcal{P} is called the **spin- polarization vector** for the ensemble

$$\mathcal{P} = \langle \sigma \rangle = Tr(\rho \sigma)$$

For spin-1, the elements of 3×3 spin density matrix written as

$$\rho = \frac{1}{3}I + \frac{1}{2}\sum_{M=-1}^{M=1} \langle S_M \rangle^* S_M + \sum_{M=-2}^{M=2} \langle T_M \rangle^* T_M$$

where $S_0=S_3$, $S_{\pm 1}=\mp\frac{1}{\sqrt{2}}(S_1+iS_2)$ are the spin operators in spherical basis and T_M s are five rank 2 irreducible tensors built from S_M .

Priyanka Sarmah 5 / 24

THE PRODUCTION AND DECAY DENSITY MATRICES

For a generic process $AB \to VX$, $V \to f\bar{f'}$. Total rate with V being on-shell is given as

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_f} = \frac{2s+1}{4\pi} \sum_{\lambda,\lambda'} \mathbf{P}(\lambda,\lambda') \Gamma(\lambda,\lambda') \tag{1}$$

 $\sigma=\sigma_V BR(V \to f \bar{f}')$ is the total cross section for production of V. $\mathbf{P}(\lambda,\lambda')(\lambda,\lambda'=\pm 1,0)$ is the polarization density matrix for V and in terms of a hermitian 3×3 production density matrix given as

$$\mathbf{P}(\lambda, \lambda') = \frac{1}{\sigma_{\nu}} \int \rho(\lambda, \lambda') d\Omega_{\nu} = \frac{1}{\sigma_{\nu}} \rho_{T}(\lambda, \lambda')$$
 (2)

with σ_V the production cross section of V without decay.

$$\rho(\lambda,\lambda^{'}) = \frac{\textit{Phase space}}{\textit{Flux}} \mathcal{M}(\lambda) \mathcal{M}^{\dagger}(\lambda^{'})$$

P parametrized in terms of a vector $P = (P_x, P_y, P_z)$ and a rank 2 traceless, symmetric tensor T_{ij} (E.Leader," Spin in particle physics")

THE PRODUCTION AND DECAY DENSITY MATRICES

$$\mathbf{P}(\lambda, \lambda') = \begin{bmatrix} \frac{1}{3} + \frac{P_z}{2} + \frac{T_{zz}}{\sqrt{6}} & \frac{P_x - iP_y}{2\sqrt{2}} + \frac{T_{xz} - iT_{yz}}{\sqrt{3}} & \frac{T_{xx} - T_{yy} - 2iT_{yz}}{\sqrt{6}} \\ \frac{P_x + iP_y}{2\sqrt{2}} + \frac{T_{xz} + iT_{yz}}{\sqrt{3}} & \frac{1}{3} - \frac{2T_{zz}}{\sqrt{6}} & \frac{P_x - iP_y}{2\sqrt{2}} - \frac{T_{xz} - iT_{yz}}{\sqrt{3}} \\ \frac{T_{xx} - T_{yy} - 2iT_{xy}}{\sqrt{6}} & \frac{P_x + iP_y}{2\sqrt{2}} - \frac{T_{xz} + iT_{yz}}{\sqrt{3}} & \frac{1}{3} - \frac{P_z}{2} + \frac{T_{zz}}{\sqrt{6}} \end{bmatrix}$$
(3)

The decay density matrix with the interaction vertex $Vf\bar{f}: \gamma^{\mu}(c_L^f P_L + c_R^f P_R)$ in its rest frame is given by

$$\Gamma(\lambda, \lambda') = \begin{bmatrix} \frac{(1+\cos^2\theta + 2\alpha\cos\theta & \frac{\sin\theta(\alpha + \cos\theta)e^{i\phi}}{2\sqrt{2}} & \frac{(1-\cos\theta^2)e^{2i\phi}}{4} \\ \frac{\sin\theta(\alpha + \cos\theta)e^{-i\phi}}{2\sqrt{2}} & \frac{\sin^2\theta}{2} & \frac{\sin\theta(\alpha - \cos\theta)e^{i\phi}}{2\sqrt{2}} \\ \frac{(1-\cos\theta^2)e^{-2i\phi}}{4} & \frac{\sin\theta(\alpha - \cos\theta)e^{-i\phi}}{2\sqrt{2}} & \frac{(1+\cos^2\theta - 2\alpha\cos\theta)e^{-i\phi}}{4} \end{bmatrix}$$
(4)

 $\alpha \rightarrow \frac{c_{R}^{2}-c_{L}^{2}}{c_{c}^{2}+c_{i}^{2}}$ for massless final state fermions

Priyanka Sarmah 7 / 24

Therefore the angular distribution of the fermion in the rest frame of V

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_f} = \frac{3}{8\pi} \left[\left(\frac{2}{3} - \frac{T_{zz}}{\sqrt{6}} \right) - P_z \cos \theta \right]
+ \sqrt{\frac{3}{2}} T_{zz} \cos^2 \theta + \left(-P_x + 2\sqrt{\frac{2}{3}} T_{xz} \cos \theta \right) \sin \theta \cos \phi
+ \left(-P_y + 2\sqrt{\frac{2}{3}} T_{yz} \cos \theta \right) \sin \theta \sin \phi
+ \left(\frac{T_{xx} - T_{yy}}{\sqrt{6}} \right) \sin^2 \theta \cos 2\phi + \sqrt{\frac{2}{3}} T_{xy} \sin^2 \theta \sin 2\phi$$
(5)

Extracting the various polarization parameters of Z - At production level, by using the polarization matrix elements (R.Rahaman and R.K.Singh, Eur.Phys.J. C76 (2016) no.10, 539)

$$P_{x} = \frac{\{\rho_{T}(+,0) + \rho_{T}(+,0)\} + \{\rho_{T}(0,-) + \rho_{T}(-,0)\}}{\sqrt{2}\sigma_{v}}$$

$$P_{y} = \frac{-i\{[\rho_{T}(0,+) - \rho_{T}(+,0)] + [\rho_{T}(-,0) - \rho_{T}(0,-)]\}}{\sqrt{2}\sigma_{v}}$$

$$P_{z} = \frac{[\rho_{T}(+,+)] - [\rho_{T}(-,-)]}{2\sigma_{v}}$$

Priyanka Sarmah 10 / 24

$$T_{xy} = \frac{-i\sqrt{6}[\rho_{T}(-,+) - \rho_{T}(+,-)]}{4\sigma_{v}}$$

$$T_{xz} = \frac{\sqrt{3}\{[\rho_{T}(+,0) + \rho_{T}(+,0)] - [\rho_{T}(0,-) + \rho_{T}(-,0)]\}}{\sqrt{2}\sigma_{v}}$$

$$T_{yz} = \frac{-i\sqrt{3}\{[\rho_{T}(0,+) - \rho_{T}(+,0)] - [\rho_{T}(-,0) - \rho_{T}(0,-)]\}}{\sqrt{2}\sigma_{v}}$$

$$T_{xx} - T_{yy} = \frac{\sqrt{6}[\rho_{T}(-,+) - \rho_{T}(+,-)]}{2\sigma_{v}}$$

$$T_{zz} = \frac{\sqrt{6}}{2}\left\{\frac{[\rho_{T}(+,+)] - [\rho_{T}(-,-)]}{\sigma_{v}} - \frac{2}{3}\right\} = \frac{\sqrt{6}}{2}\left[\frac{1}{3} - \frac{\rho_{T}(0,0)}{\sigma_{v}}\right]$$

Here T_{xx} and T_{yy} can be separately calculated by using the tracelessness property of T_{ii} .

Priyanka Sarmah 11/24

At decay level, by using partial integration of the differential distribution (equation(5)) and then constructing various asymmetries.(R.Rahaman and R.K.Singh, Eur.Phys.J. C76 (2016) no.10, 539)

$$A_{x} = \frac{3\alpha P_{x}}{4} \equiv \frac{\sigma(\cos\phi > 0) - \sigma(\cos\phi < 0)}{\sigma(\cos\phi > 0) + \sigma(\cos\phi < 0)}$$

$$A_{y} = \frac{3\alpha P_{y}}{4} \equiv \frac{\sigma(\sin\phi > 0) - \sigma(\sin\phi < 0)}{\sigma(\sin\phi > 0) + \sigma(\sin\phi < 0)}$$

$$A_{z} = \frac{3\alpha P_{z}}{4} \equiv \frac{\sigma(\cos\theta > 0) - \sigma(\cos\theta < 0)}{\sigma(\cos\theta > 0) + \sigma(\cos\theta < 0)}$$

$$A_{xz} = \frac{-2}{\pi} \sqrt{\frac{2}{3}} T_{xz} \equiv \frac{\sigma(\cos\theta\cos\phi < 0) - \sigma(\cos\theta\cos\phi > 0)}{\sigma(\cos\theta\cos\phi > 0) + \sigma(\cos\theta\cos\phi < 0)}$$

Pryanka Sarmah 12 / 24

$$\begin{split} A_{yz} &= \frac{2}{\pi} \sqrt{\frac{2}{3}} \, T_{yz} \equiv \frac{\sigma(\cos\theta\sin\phi > 0) - \sigma(\cos\theta\sin\phi < 0)}{\sigma(\cos\theta\sin\phi > 0) + \sigma(\cos\theta\sin\phi < 0)} \\ A_{x^2 - y^2} &= \frac{1}{\pi} \sqrt{\frac{2}{3}} (T_{xx} - T_{yy}) \equiv \frac{\sigma(\cos2\phi > 0) - \sigma(\cos2\phi < 0)}{\sigma(\cos2\phi > 0) + \sigma(\cos2\phi < 0)} \\ A_{xy} &= \frac{2}{\pi} \sqrt{\frac{2}{3}} \, T_{xy} \equiv \frac{\sigma(\sin2\phi > 0) - \sigma(\sin2\phi < 0)}{\sigma(\sin2\phi > 0) + \sigma(\sin2\phi < 0)} \\ A_{zz} &= \frac{3}{8} \sqrt{\frac{3}{2}} \, T_{zz} \equiv \frac{\sigma(\sin3\theta > 0) - \sigma(\sin3\theta < 0)}{\sigma(\sin3\theta > 0) + \sigma(\sin3\theta < 0)} \end{split}$$

Helicity Amplitudes for $e^- + e^+ \rightarrow Z + H$

$$e^{-}(p_1) + e^{+}(p_2) \rightarrow Z^{\alpha}(k_2) + H(k)$$

In the limit of massless initial states

$$\begin{array}{lcl} M(-,+,\pm) & = & \frac{g_{w}^{2}m_{z}\sqrt{s}}{\cos^{2}\theta_{w}((s-m_{z}^{2})+i\Gamma_{z}m_{z})}\frac{(c_{v}+c_{a})}{2}\left[1-\frac{\sqrt{s}}{m_{z}^{2}}(E_{z}b_{z}\pm i\tilde{b_{z}}P_{z})\right] \\ & \times \frac{(1\mp\cos\theta)}{\sqrt{2}} \\ M(\mp,\pm,0) & = & \frac{g_{w}^{2}\sqrt{s}}{\cos^{2}\theta_{w}((s-m_{z}^{2})+i\Gamma_{z}m_{z})}\frac{(c_{v}\pm c_{a})}{2}\left[E_{z}-\sqrt{s}b_{z}\right]\sin\theta \\ M(+,-,\pm) & = & \frac{g_{w}^{2}m_{z}\sqrt{s}}{\cos^{2}\theta_{w}((s-m_{z}^{2})+i\Gamma_{z}m_{z})}\frac{(c_{v}-c_{a})}{2}\left[-1+\frac{\sqrt{s}}{m_{z}^{2}}(E_{z}b_{z}\pm i\tilde{b_{z}}P_{z})\right] \\ & \times \frac{(1\pm\cos\theta)}{\sqrt{2}} \end{array}$$

where the first two entries in M denote the helicities +1/2 and -1/2 of the electron and positron respectively

Priyanka Sarmah 14 / 24

 $\sqrt{s}=$ total center of mass energy , $C_v=-0.5+\sin^2\theta_w$, $C_a=-0.5$ where θ_w is the weak mixing angle.

we adopt the following representations for the polarization vectors of Z

$$\varepsilon_{\mu}(s=\pm 1) = \mp \frac{1}{\sqrt{2}}(0, -\cos\theta, \mp i, \sin\theta) \tag{6}$$

$$\varepsilon_{\mu}(s=0) = \frac{1}{m_z} (|p_z|, -E_z \sin \theta, 0, -E_z \cos \theta)$$
 (7)

where E_z , $|p_z|$ are the energy and momentum of the Z respectively, with θ being the polar angle made by Z with respect to the e^- coming along the positive z axis.

Priyanka Sarmah 15/24

Sensitivities at $\sqrt{s}=500 \, \text{GeV}$, $\int \mathcal{L} dt=500 \, \text{fb}^{-1}$ for unpolarized and polarized beams

		Limit $(\times 10^{-3})$ for	
Observable	Coupling	$P_L=0$	$P_L = -0.8$
		$\bar{P}_L = 0$	$\bar{P}_L = 0.3$
σ	Re bz	3.32	2.8
A_{x}	Re b_z	394	54.2
A_{y}	Re $ ilde{b}_z$	204	28.2
A_z	Im \tilde{b}_z	47.9	40.4
A_{xy}	Re $ ilde{b}_z$	33.7	28.5
A_{yz}	Im b _z	77.7	10.7
A_{xz}	$\operatorname{Im} ilde{b}_z$	72.0	9.93
$A_{x^2-y^2}$	Re b_z	46.7	39.4
A_{zz}	Re b _z	12.8	10.8

- $ightharpoonup \sigma$ sensitive to only Re b_z and A_x , $A_{x^2-y^2}$, A_{zz} being CP even observables depend on CP even Re b_z
- ▶ Remaining asymmetries being either CP even and T odd or CP odd, has dependence on the CP odd coupling (Im b_z , \tilde{b}_z)

(K.Rao, S.D. Rindani, P.Sarmah, Nucl.Phys.B 950 114840 (2020))

Priyanka Sarmah 16 / 24

Sensitivities at $\sqrt{s}=250 \text{GeV}$, $\int \mathcal{L}dt=2 \text{ ab}^{-1}$ for unpolarized and polarized beams

		Limit $(\times 10^{-3})$ for	
Observable	Coupling	$P_L=0$	$P_L = -0.8$
		$\bar{P}_L = 0$	$\bar{P}_L = 0.3$
σ	Re bz	1.36	1.15
A_{\times}	Re b_z	3480	478
A_{y}	Re $ ilde{b}_z$	303	41.7
A_z	$\operatorname{Im} ilde{b}_z$	32.3	27.2
A_{xy}	Re $ ilde{b}_z$	22.7	19.2
A_{yz}	Im b _z	189	26.1
A_{xz}	$\operatorname{Im} ilde{b}_z$	107	14.7
$A_{x^2-y^2}$	Re b_z	94.5	80.2
A_{zz}	Re bz	26.8	22.8

- Better sensitivities for oppositely polarized beams
- Slight improvement on limits with increasing c.m. energy
- ▶ Minimal acceptance cut leads to 1% change in all the observables

(K.Rao, S.D. Rindani, P.Sarmah, Nucl.Phys.B 950 114840 (2020))

Priyanka Sarmah 17/24

Asymmetries and Sensitivities at LHC

$$q(p_1) + \bar{q}(p_2) \rightarrow Z^{\alpha}(p) + H(k)$$

FIGURE: Feynman diagram for ZH production.

where the vertex $Z_{\mu}(k_1) \to Z_{\nu}(k_2)H$ takes the following Lorentz invariant structure

$$\Gamma^{V}_{\mu\nu} = \frac{g_w}{\cos\theta_w} m_z \left[a_z g_{\mu\nu} + \frac{b_z}{m_z^2} \left(k_{1\nu} k_{2\mu} - g_{\mu\nu} k_1.k_2 \right) + \frac{\tilde{b}_z}{m_z^2} \epsilon_{\mu\nu\alpha\beta} k_1^\alpha k_2^\beta \right]$$

Priyanka Sarmah 18 / 24

Sensitivities at $\sqrt{s} = 14$ TeV LHC

Observable	Coupling	Limit $(\times 10^{-3})$
σ	Re b_Z	0.70
A_{\times}	Re b_Z	136
A_{y}	Re $ ilde{b}_Z$	37.9
A_z	Im $ ilde{b}_Z$	13.5
A_{xy}	Re $ ilde{b}_Z$	9.53
A_{yz}	$Im\ b_Z$	16.5
A_{xz}	Im $ ilde{b}_Z$	13.3
$A_{x^2-y^2}$	Re b_Z	24.4
A_{zz}	Re <i>b</i> _Z	6.88

TABLE: 1σ limit obtained from cross section and various leptonic asymmetries calculated upto linear order in couplings at $\sqrt{s}=14$ TeV with integrated luminosity $\int \mathcal{L}dt=1000$ fb⁻¹.

Priyanka Sarmah 19/24

Sensitivities at $\sqrt{s} = 14$ TeV and $\int \mathcal{L}dt = 1000$ fb⁻¹

Priyanka Sarmah 20 / 24

Observable	Coupling	Limit $(\times 10^{-3})$
σ	$ \text{Re } b_Z $	0.70
σ	$ \text{Im } b_Z $	15.9
A_{xy}	$ {\sf Re}\; ilde{b}_Z $	9.54
A_{xz}, A_z	$ {\sf Im} ilde{b}_Z $	13.3

Table: The best 1σ limit on couplings and the corresponding observables at $\sqrt{s}=14~{\rm TeV}$

(K.Rao, S.D.Rindani, P.Sarmah, Nucl.Phys.B 964 115317 (2021))

SUMMARY

- ▶ Studied anomalous ZZH vertex by making use of the full density matrix of Z boson at the e^+e^- and LHC. The 8 angular asymmetries corresponding to different polarization states of Z, help probing all the anomalous couplings.
- We see that most of the 1σ limits are of the order of a few times 10^{-3} for 500 GeV e^+e^- colliders and find that beams with opposite polarization provides better limits on the couplings.
- ▶ $\sqrt{s} = 14$ TeV LHC with $\int \mathcal{L}dt = 1000$ fb⁻¹ could provide a limit on the couplings Re b_z in the interval $[-0.7, 0.7] \times 10^{-3}$ and Im b_z in the interval $[-15.9, 15.9] \times 10^{-3}$.
- ▶ Couplings Re \tilde{b}_z and Im \tilde{b}_z get a best bound of $|\text{Re}\tilde{b}_z| \leq 9.54 \times 10^{-3}$ and $|\text{Im}\tilde{b}_z| \leq 13.3 \times 10^{-3}$ respectively.

FIGURE: 1σ sensitivity contours for cross-section and asymmetries obtained by varying two parameters simultaneously.

FIGURE: 1σ sensitivity contours for cross-section and asymmetries obtained by varying two parameters simultaneously.

Priyanka Sarmah 24 / 24