Bridging the μ Hz gap with asteroids

The XXVIII International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2021)

Remote presentation

August 27, 2021

M.A.F., P.W. Graham, and S. Rajendran. *In preparation* (2021). [21xx.yyyyy]. M.A.F., P.W. Graham, and S. Rajendran. *Phys. Rev. D* **103**, 103017 (2021) [2011.13833].

Michael A. Fedderke

mfedderke@jhu.edu mfedderke.com

GW Detection Landscape

Strong science case for broad coverage!

Existing / proposed facilities provide good coverage.

But there is a gap...

The "µHz Gap"

Many interesting sources in the "gap":

- Galactic binary black holes (BHBs)
- Cosmologically distant supermassive binary black holes (SMBHBs)
- $10M_{\odot}$ spiraling into SgrA*
- Intermediate mass ratio inspires (IMRIs)

Some observational studies and approaches exist:

- μ Ares (LISA-style: bigger and better TM)
- Astrometric techniques

Strawman mission concept:

LISA-like, but with 3AU arms lengths, greatly improved low-frequency test masses

The µAres detection landscape 1908.11391 10^{-14} ~1000 inspiralling SMBHBs out to z~10 10⁻¹ SgrA*+0.05M $_{\odot}$ 10⁶ yr to merger Hundreds of merging MBHBs SKA out to z~20 10⁻¹⁶ ~100k Galactic DWDs Characteristic amplitude 10-10-01 10^{-18} SgrA*+10M_{\odot} 10⁸ yr to merger ~100 Galactic BHBs Galactic binaries GWB 10^{-1} Cosmological MBHB GWB $10^{8}M_{\odot}$ +10⁴M_{\odot} IMRI @z=7 ⁺M_☉ IMRI @z=7 10⁻²⁰ * LISA $10^{7}M_{\odot} + 10^{3}M_{\odot}$ IMRI @z=1 $3 \times 10^{5} M_{\odot} + 10 M_{\odot}$ EMRI @z=1 >1k extragalactic BHBs 10⁻²¹ µAres 10⁻⁶ 10⁻³ 10⁻² 10⁻⁸ 10⁻⁷ 10⁻⁵ 10⁻¹ 10⁻⁹ 10⁻⁴ Frequency [Hz]

3 Michael A. Fedderke (JHU)

This band is challenging!

FROM ABOVE: LOCAL TM APPROACHES

FROM BELOW: PTAs

Difficult to approach this band from either end with existing approaches

A Mission Concept

Can we use natural massive TM, but do it so we can build the ranging link?

Rest of this talk: evaluate asteroids* as the TM

Ranging: park base stations (clock + emitter/receiver) on good candidates and range by, e.g., radio or laser timing

cf. Lunar Laser Ranging (but no Earth-atmosphere to worry about!)

See also talk by Yu-Dai Tsai earlier in the conference for a different idea using asteroids for fifth-force searches

Base station: emitter/receiver atomic clock

*One of the TMs could be a moon

Candidates and missions

NASA JPL Small-Body Database

Asteroid	a [AU]	<i>D</i> [km]	T _{rot} [hrs]
433 Eros	1.46	16.8	5.3
1627 Ivar	1.86	9.1	4.8
2064 Thomsen	2.18	13.6	4.2
6618 Jimsimons	1.87	11.5	4.1

Mission	Destination	Activity	Key Years
NEAR-Shoemaker	433 Eros	orbiter / soft landing	2000/1
DAWN	Ceres, Vesta	orbiter	2010s
Hayabusa	25143 Itokawa	orbiter / landing / sample return	2005
Hayabusa2	162173 Ryugu	orbiter / hopping "rovers" / sample return	2018- (ongoing)
OSIRIS-REx	101955 Bennu	orbiter / sample return	2018-21
Rosetta	Comet 67P	orbiter / lander (Philae)	2014-16

 $\sim 3 \times 10^{-5} \,\mathrm{Hz}$

Hayabusa2 @ Ryugu

JAXA

NASA/Goddard/University of Arizona

Existing or projected approaches in the μ Hz band

7 Michael A. Fedderke (JHU)

Solar intensity fluctuations

8km spherical asteroids at 1.5AU from the Sun, assuming fixed 1AU baseline (variation of out band)

$$\sqrt{S_a(f)} \sim \frac{\overline{P}_{\odot}}{c} \left(\frac{r_{\oplus}}{r}\right)^2 \frac{A_{\text{ast}}}{M_{\text{ast}}} \sqrt{S_f}$$
$$h_c \sim (2\pi f)^{-2} L^{-1} \sqrt{fS_a(f)}$$

MEASURED FRACTIONAL SOLAR PSD Fröhlich and Lean [Astron. Astrophys. Rev. 12 (2004) 273-320]

8 Michael A. Fedderke (JHU)

Solar wind fluctuations

Similar estimate to the intensity fluctuations:

$$\sqrt{S_a(f)} \sim m_p \left(\frac{r_{\oplus}}{r}\right)^2 \frac{A_{\text{ast}}}{M_{\text{ast}}} \sqrt{S_{\Omega}}$$
$$\Omega = n_p v_p^2$$

Proton flux and speed monitored by the **CELIAS/MTOF** proton monitor on SOHO

9 Michael A. Fedderke (JHU)

Thermal cycling

Gigantic noise at rotation frequency, but out of band

Relevant estimate is from in-band surface temperature fluctuations arising from solar intensity fluctuation

Expansion from heating upper $d_{\rm th.} \sim 1 \,\mathrm{m} \times \sqrt{\mu \mathrm{Hz}/f}$

of the asteroid (rock estimate - conservative, since regolith is a blanket)

 $\Delta x \sim \frac{1}{3} d_{\text{th.}} k_{\text{th.}} \Delta T$ $\Delta T \sim \frac{1}{4} \overline{T} \sqrt{f S_{\hat{P}}(f)}$

Severe noise at rotational period(s)

4/5 hrs & harmonics

Asteroid GGN

Sum over $\sim 10^6$ other asteroids (in Main Belt, and some close-passers) give a noise for **all** local-TMbased proposals operating in the inner Solar System.

M.A.F., P.W. Graham, and S. Rajendran. Phys. Rev. D 103, 103017 (2021) [2011.13833].

> Note: also get cut off severely by uncontrolled relative motion of asteroids around orbital frequencies.

> > ...other acceleration noise sources estimated, subdominant: charging, magnetic forces and torques, collisions, tidal deformation, etc.

Seismic noise

- Asteroids are ancient, dead rock: no tectonics, no residual heat.
- Pick asteroids that are ~ solid
 - There simply aren't resonant frequencies to excite in our band!
- (around ~Hz): $h \sim 10^{-20}$ for AU baselines
- **Motivates seismic experiments on future asteroid missions**

• 433 Eros: lowest normal-mode frequency is ~10 mHz [Walker, Sagebiel, Huebner. Adv. Space Res. 37 (2006) 142–152]

Seismic measurements on the Moon and Mars typically have amplitudes of ~few nm

(already motivated by internal structure studies [e.g., APEX mission concept])

Link Noise

Distance measurement by round-trip timing / "radar ranging"

Shot noise of laser pulsing link OR thermal noise from radio interferometric link.

Exemplar curves shown.

Asteroids are (obviously) **not** in formation flight. LISA-class heterodyne optical interferometry links would be hard, but can significantly relax optical system requirements!

*NOTE: WE HAVE NOT ACCESSED THE ENGINEERING CHALLENGES **OF BUILDING THESE LINKS!**

Projected Sensitivity Curves

Asteroids are excellent test masses for a GW detector in the μ Hz band

Laser/radio ranging between onasteroid base stations equipped with transmit/receive capability and atomic clocks gets excellent sensitivity

Further strongly motivates:

- in-situ seismic / plastic deformation monitoring of asteroids in upcoming missions
- space-qualifying atomic clocks

Thanks!

16 Michael A. Fedderke (JHU)

