

THE UNIVERSITY OF

Kavli Institute for Cosmological Physics AT THE UNIVERSITY OF CHICAGO

Gravitational wave propagation beyond GR: waveform distortions and echoes

Jose Maria Ezquiaga, Wayne Hu, Macarena Lagos, Meng-Xiang Lin arXiv: 2108.10872 mxlin@uchicago.edu 2021.08.26 at SUSY2021

THE UNIVERSITY OF CHICAGO

Kavli Institute for Cosmological Physics At The UNIVERSITY OF CHICAGO

Motivation

- LIGO/VIRGO gravitational wave (GW) detections give a strong constrain on gravity theory beyond GR
- Future: Einstein Telescope, Cosmic Explorer, LISA, TianQin, BBO, DECIGO, PTA
- It's the best era to test GR!

Motivation

- We study GW propagation if GWs interact with another field
- Homogenous and isotropic cosmological background (no interaction with scalar or vector DoF in linear theory, only tensor DoF)
- Parametrized equation of motion
- Theoretical Examples: massive bigravity, Yang-Mills theories, Abelian multi-gauge field, Multi-Proca theories (see also Jimenez et al. 2020 for details)

Equation of Motion

velocityMass
$$\left[\hat{I}\frac{d^2}{d\eta^2} + \hat{\nu}(\eta)\frac{d}{d\eta} + \hat{C}(\eta)k^2 + \hat{\Pi}(\eta)k + \hat{M}(\eta)\right] \begin{pmatrix} h \\ s \end{pmatrix} = 0$$
FrictionChiralh: GW fields: Coupled tensor field

for Cosmological Physics

General Solution: two eigen propagation modes

$$h(\eta, k) = \sum_{A} h_0(k) f_A(\eta, k) e^{-i\phi_A(\eta, k)}$$
$$\phi_A = \int \omega_A d\eta \qquad (\text{GR: } \omega_A = ck)$$

- Constant coefficients: exact analytical solution
- Time-dependent coefficients: WKB approximation
- Two eigenmodes propagate independently in high-k limit.
- The detected signal is the superposition of the two eigenmodes.

Phenomenon highlights

- Three timescales: mixing, coherence, broadening
- Observational implication:
 - Echoes
 - Phase distortion

Echoes: from coherence to decoherence

Broadening

Real waveforms: k-dependent group velocity \rightarrow phase distortion

Summary

- We study GW propagation if GW field interacts with another tensor field, obtain general WKB solution
- Three timescales: mixing, coherence, broadening
- Observational implication:
 - Echoes
 - Phase distortion
- Other interesting phenomena in the paper (see arxiv:2108.10872)
 - Apparent luminosity distance change
 - Polarization oscillations and amplitude/phase birefringence
 - Broadening prevents decoherence

BACKUP

Typical timescales

• Dispersion relation:

$$\omega_A(k) = \omega_A(k_0) + \frac{\partial \omega_A}{\partial k}(k - k_0) + \frac{1}{2}\frac{\partial^2 \omega_A}{\partial k^2}(k - k_0)^2 + \cdots$$

- Mixing: $T_{mix}|\omega_1 \omega_2| \sim 2\pi$
 - $T > T_{mix}$: oscillations due to mixing
- Coherence: $T_{coh}|v_{g1} v_{g2}| \sim \sigma_A$, $v_{g,A} = \frac{\partial \omega_A}{\partial k}$
 - $T > T_{coh}$: echoes
- Broadening: $T_{broad,A} \left| \frac{\partial^2 \omega_A}{\partial k^2} \right| \sim \sigma_x^2$
 - $T > T_{broad}$: phase distortions

Observation: for real binary coalescence signal

	Regime	Observables
0)	$z \ll z_{ m mix}, z_{ m broad}, z_{ m coh}$	Unmodified waveform
1)	$z_{\rm broad} < z \ll z_{\rm mix}, z_{\rm coh}$	Single event with modified phase evolution
2a)	$z_{\rm mix} < z < z_{\rm broad}, z_{\rm coh}$	Single event with $d_L^{\text{GW}} \neq d_L$ and constant phase shift, or
2b)		frequency-dependent amplitude modulation with phase distortions
3)	$z_{\rm mix}, z_{ m broad} < z < z_{ m coh}$	Single event with modified phase evolution
4)	$z_{\rm coh} < z < z_{ m broad}$	Echoes with different arrival times and d_L^{GW}
5)	$z_{ m coh}, z_{ m broad} < z$	Echoes with different arrival times and phase distortions

Main effects: echoes, phase distortions, oscillations and birefringence

 β : degree of circular polarization (amplitude birefringence) χ : orientation of elliptical polarization (phase birefringence)

Kavli Institute for Cosmological Physics

Observation: apparent luminosity distance (friction mixing)

Kavli Institute for Cosmological Physics

AT THE UNIVERSITY OF CHICAGO

Observation: birefringence (chiral mixing)

