Take-home messages

GWs from first-order phase transitions:

A hybrid simulation

& signal enhancement from density perturbations

Ryusuke Jinno (DESY)

SUSY 2021, 8.24.2021@Shanghai

density pert.

Effect of

Hybrid simulation

Intro

J.v.d.Vis

H. Rubira

[Jinno, Konstandin, Rubira, v.d.Vis, to appear] [Jinno, Konstandin, Rubira, JCAP 04 (2021) 014, 2010.00971]

1ST-ORDER PT & GW PRODUCTION: A BRIEF SKETCH

Bubbles nucleate, expand, collide and disappear

Position space

nucleation of bubbles

Bubble dynamics & GW production

1ST-ORDER PT & GW PRODUCTION: A BRIEF SKETCH

Bubbles nucleate, expand, collide and disappear

Bubble dynamics is in reality a violent process involving fluid dynamics Higgs wall Fluid talse vacuum true vacuum **Bubbles & fluid** released source GWs energy true true Bubble dynamics & GW production Quantum tunneling

SUMMARY ON ONGOING/FUTURE GW OBSERVATIONS

➤ Time to develop robust theoretical predictions

ANALYTICAL VS. NUMERICAL METHODS: STATE OF THE ART

from T. Konstandin's talk

(Semi-)analytical

e.g. envelope, bulk flow, sound shell, ...

Numerical

[Kosowsky, Turner, Watkins '92] [Kosowsky, Turner '93]

[Huber, Konstandin '08] [Jinno, Takimoto '17]

[Caprini, Durrer, Servant '08]

[Jinno, Takimoto '19] [Konstandin '17]

[Hindmarsh '18] [Hindmarsh, Hijazi '19]

[Lewicki, Pujolas, Vaskonen '21] [Megevand, Membiela '21] ...

[Hindmarsh, Huber, Rummukainen, Weir '13,'15,'17]

[Cutting, Hindmarsh, Weir '18,'19]

[Cutting, Escartin, Hindmarsh, Weir '20]

[Gould, Sukuvaara, Weir '21] ...

Pros.

Less cost

Better analytical understanding

Less a priori assumptions

More robust predictions

Cons.

Modeling = Assumptions

More cost

"Artifact" from Higgs field

(→ next slide)

ANALYTICAL VS. NUMERICAL METHODS: STATE OF THE ART

from T. Konstandin's talk

(Semi-)analytical

e.g. envelope, bulk flow, sound shell, ...

[Kosowsky, Turner, Watkins '92] [Kosowsky, Turner '93]

[Huber, Konstandin '08] [Jinno, Takimoto '17]

[Caprini, Durrer, Servant '08]

[Jinno, Takimoto '19] [Konstandin '17]

[Hindmarsh '18] [Hindmarsh, Hijazi '19]

[Lewicki, Pujolas, Vaskonen '21] [Megevand, Membiela '21] ...

Less cost

Better analytical understanding

Cons.

Pros.

Modeling = Assumptions

Numerical

[Hindmarsh, Huber, Rummukainen, Weir '13,'15,'17]

[Cutting, Hindmarsh, Weir '18,'19]

[Cutting, Escartin, Hindmarsh, Weir '20]

[Gould, Sukuvaara, Weir '21] ...

Less a priori assumptions

More robust predictions

More cost

"Artifact" from Higgs field

(→ next slide)

ONE PROBLEM ABOUT NUMERICAL SIMULATIONS

"Artifact" from the Higgs field?

from T. Konstandin's talk

In simulations

grid spacing < (wall thickness < fluid shell < bubble size) < box size

appears as "artifact"

HYBRID SIMULATION: THE IDEA

Central idea: To get rid of the Higgs field & simulate only with fluid

<u>Step1</u>: Create surface data for collision time

This is possible without simulation, just from the distribution of the nucleation points (\star)

HYBRID SIMULATION: THE IDEA

Central idea: To get rid of the Higgs field & simulate only with fluid

Step2: Simulate radial 1d evolution after collision only with fluid

We do not need to evolve the profile <u>before</u> collision, since it is well known from the literature. [Espinosa, Konstandin, No, Servant '10]

We solve the radial evolution using a shock-conserving scheme (Kurganov-Tadmor).

HYBRID SIMULATION: THE IDEA

➤ Central idea: To get rid of the Higgs field & simulate only with fluid

Step3: embed 1d back into 3d (1) and calculate GWs (2)

HYBRID SIMULATION: EXAMPLE ANIMATION

HYBRID SIMULATION: RESULTS

 $\alpha = 0.0046, v_{\text{wall}} = 0.52$

(typical bubble size)⁻¹ (typical fluid shell)⁻¹

GW spectrum

GW spectrum at different time slices

wavenumber

HYBRID SIMULATION: RESULTS

 $\alpha = 0.0046$, $v_{\text{wall}} = 0.52$

(typical bubble size) -1 (typical fluid shell) -1

GW spectrum

We extract this component (→ next slide)

wavenumber

HYBRID SIMULATION: RESULTS

Parametrization of the GW spectrum

Characteristic wavenumeber q_l , q_h

Exponents n_l , n_m , n_h

EFFECT OF DENSITY PERTURBATIONS

- Density (i.e. curvature) perturbations
 - Constrained to $\,\zeta \sim \frac{\delta T}{T} \sim 10^{-4}\,$ at CMB scales
 - Basically unconstrained at smaller scales (large k)

- ➤ Our interest: biased nucleation time & position from density perturbations
 - Density perturbations work as "effective big bubbles" Summary:
 - To have interesting effects, their amplitude only needs to be $\frac{\delta T}{T} \sim \frac{H_*}{\beta} \ll 1$

CENTRAL IDEA

Without density perturbations

With density perturbations

formation of "effective big bubbles" around the cold spots

EFFECT OF DENSITY PERTURBATIONS

Density perturbations are parameterized by two quantities

typical wavenumber
$$k_* \to \text{see below}$$

typical normalized amplitude $\sigma \sim \frac{\delta T}{T} / \frac{H_*}{\beta} \to \text{effects set in once } > 1$

➤ Dependence of the nucleation points (\star) on k_*

EFFECT OF DENSITY PERTURBATIONS

Density perturbations are parameterized by two quantities

typical wavenumber
$$k_* \to \text{see below}$$

typical normalized amplitude $\sigma \sim \frac{\delta T}{T} / \frac{H_*}{\beta} \to \text{effects set in once } > 1$

➤ Dependence of the nucleation points (\bigstar) on k_*

Density perturbations work as "effective big bubbles"

nucleation points displaced by $\sim k_*^{-1}$

GW ENHANCEMENT FROM DENSITY PERTURBATIONS

▶ Density perturbations with $H_* < k_* < \beta$ enhance the GW signal

TAKE-HOME MESSAGES

- ➤ It's time to develop analytical & numerical methods for GW predictions in first-order phase transitions
- ➤ We propose a "hybrid simulation" to get rid of the artifact from the scalar field

- ➤ We point out GW signal enhancement from density perturbations:
 - occurs for typical wavenumber $H_* < k_* < \beta$
 - amplitude $\frac{\delta T}{T} \sim \frac{H_*}{\beta} \ll 1$ is enough to have this effect

Backup

PRESENT & FUTURE OBSERVATIONS

LISA (Laser Interferometer Space Antenna)

- ➤ Space interferometer project led by ESA & NASA
- ➤ Selected as third-large class mission(L3) in 2017. Operation from 2034.
- \triangleright 3 spacecrafts orbitting around the Sun. Distance btwn spacecrafts = 2.5×10^6 km.
- ➤ Tested necessary technologies with LISA pathfinder since 2015.

GW ENHANCEMENT FROM DENSITY PERTURBATIONS

typical wavenumber of density perturbations $k_*L/2\pi$

typical wavenumber of density perturbations