Chiral models of composite axions and accidental Peccei-Quinn symmetry

Alessandro Podo

Based on

R. Contino, AP, F. Revello - arXiv: 2108.xxxxx

SUSY 21 - 26 August 2021

The Standard Model paradigm

- Gauge dynamics
- Global symmetries are accidental
 - renormalizable lagrangian
 - higher-dimensional operators become irrelevant in the IR
 - global symmetries emerge as accidental symmetries flavour symmetries and custodial SO(3) $\text{Baryon number } U(1)_B \text{ and lepton number } U(1)_L$

+ [...]

- Fermions in chiral representations
 - bare fermion masses forbidden; generated dynamically
- Unification of gauge couplings?
 - fermions in complete GUT multiplets

Chiral gauge theories

the good

Fermions in complex representations of the gauge group

No bare mass term
$$\delta \mathcal{L} = \mathcal{Q}^\dagger \sigma^\mu i D_\mu \mathcal{Q} - N \mathcal{Q} \mathcal{Q}$$

- Dynamical generation of all energy scales
- Cancellation of gauge anomalies gives non-trivial constraints

Chiral gauge theories

the good

Fermions in complex representations of the gauge group

No bare mass term
$$\delta \mathcal{L} = \mathcal{Q}^\dagger \sigma^\mu i D_\mu \mathcal{Q} - N \mathcal{Q}$$

- Dynamical generation of all energy scales
- Cancellation of gauge anomalies gives non-trivial constraints
- Non-abelian simple gauge group: what happens at confinement?
- No lattice simulations for chiral gauge theories

IR behaviour of theories with simple gauge group not understood

the bad

Chiral gauge theories

the good

Fermions in complex representations of the gauge group

No bare mass term
$$\delta \mathcal{L} = \mathcal{Q}^\dagger \sigma^\mu i D_\mu \mathcal{Q} - N \mathcal{Q}$$

- Dynamical generation of all energy scales
- Cancellation of gauge anomalies gives non-trivial constraints
- Non-abelian simple gauge group: what happens at confinement?
- No lattice simulations for chiral gauge theories

IR behaviour of theories with simple gauge group not understood

the bad

Consider chiral product gauge group with confining vector-like factor

the ugly

A calculable model with a chiral sector and SM interactions

Consider a massless vector-like theory

Symmetry Breaking Pattern:

$$SU(2) \times SU(2) \times U(1)_V \longrightarrow SU(2)_V \times U(1)_V$$

spontaneous

A calculable model with a chiral sector and SM interactions

and consider the weak gauging of a subgroup $\,U(1)_{D}\,$

Symmetry Breaking Pattern:

$$\begin{split} SU(2) \times SU(2) \times U(1)_V &\longrightarrow SU(2)_V \times U(1)_V \\ & \xrightarrow{\text{explicit}} & U(1)_{3V} \times U(1)_V \end{split}$$

 $m U(1)_D$ acquires a mass from the bilinear condensate $\,m_{\gamma_D} \sim f \,e_D$

A calculable model with a chiral sector and SM interactions

chiral fermions should come in complete GUT multiplets

Contino, AP, Revello - JHEP 02 (2021) 091

one (combination) of the two singlets has anomalous couplings to SM

$$ightharpoonup$$
 axion-like particle $\delta m_{\tilde{a}}^2 \sim \frac{g_{
m GUT}^2}{16\pi^2} \frac{\Lambda_{
m DC}^4}{M_{
m GUT}^2}$ $ightharpoonup$ not QCD axion

GUT contribution

Accidental Peccei-Quinn symmetry

The axion quality problem

UV effects : PQ breaking operator with dimension Δ_{PQ}

IR effect
$$\Delta\theta \approx |c|\,\phi_{CP} \left(\frac{M_{\rm Pl}}{\Lambda_{\rm QCD}}\right)^4 \left(\frac{f_a}{M_{\rm Pl}}\right)^{\Delta_{PQ}}$$

neutron EDM experiment: $\Delta \theta \leq 10^{-10}$

nEDM - PRL 124 (2020) 8, 081803

for
$$f_a \lesssim 10^{12} \, \mathrm{GeV}$$
 \longrightarrow $\Delta_{PQ} \gtrsim 12$

ullet in the model we just defined: ${\cal O}=\psi_1\psi_2\chi_1\chi_2$

Selection rules on PQ violating operators

- Not every PQ violating operator is dangerous!
- A generic PQ violating operator generates a potential only if it has non vanishing matrix element with a state containing axions:

$$\langle \psi_a | \mathcal{O}_{PQ} | 0 \rangle \neq 0$$

• The operator must be an interpolating operator for the axion with vanishing vectorial charges.

It can be a composite operator built from the insertion of N local operators

$$d_{\text{eff}} = \sum_{i=1}^{N} d_i - 4(N-1)$$

High quality accidental PQ

Can we modify our construction to have an high quality composite axion? Yes!

	$\mathrm{SU}(N_{\mathrm{DC}})$	$\mathrm{U}(1)_\mathrm{D}$	$G_{\rm SM}$	$U(1)_{PQ}$
ψ_1		p_1	r_1	α
ψ_2		p_2	r_2	β
ψ_3		p_3	r_3	γ
χ_1		q_1	\bar{r}_1	α
χ_2	$\bar{\Box}$	q_2	$ar{r}_2$	β
χ_3	$\bar{\Box}$	q_3	\bar{r}_3	γ

G_{SM}	$\mid r_1 \mid$	r_2	r_3
$SU(5)_{GUT}$	1	5	10
	1	$ar{5}$	10
$SU(3)_c$	1	3	6
	1	$ar{3}$	6

- confining SU(N)
- perturbativity of SM up to MPI
- accidental PQ

with appropriate choices of U(1) charges PQ is protected up to dim 12

dim 12 operators always exist in these models as a consequence of anomaly cancellation

High quality axion - GUT model

Robust model: high quality irrespectively of GUT scalar sector

		$\mathrm{SU}(\mathrm{N}_{\mathrm{DC}})$) $U(1)_D$	$SU(5)_{GUT}$	$U(1)_{PQ}$	
	ψ_1		+2	1	+5	
	ψ_2		+3	$ar{5}$	+1	
3 7	ψ_3		-5	10	-1	
$N_{\rm DC} = 5$	χ_1		+3	1	+5	+ othei
	χ_2		-6	5	+1	
	χ_3		+6	$\overline{f 10}$	-1	

dim 12 PQ violating operator: $\,\mathcal{O}_1 = \psi_2 \chi_2 (\psi_3 \chi_3)^3\,$

QCD axion low energy couplings

- Axion low energy couplings
 - well-predicted but not distinctive low energy couplings
 - common to "hadronic axion" models

$$m_a = 5.70(7) \left(\frac{10^{12} \,\text{GeV}}{f_a} \right) \,\mu\text{eV},$$

$$g_{a\gamma\gamma} = \frac{\alpha_{em}}{2\pi f_a} \left(\frac{E}{N} - 1.92(4) \right),\,$$

$$c_p = -0.47(3), \quad c_n = -0.02(3),$$

GUT models have fixed E/N = 8/3

Grilli di Cortona, Hardy, Vega, Villadoro - JHEP 05 (2016) 104

Cosmological evolution

- Cosmological evolution:
 - PQ breaking after the end of inflation is disfavoured for composite models
 - accidentally stable heavy resonances + domain walls

- PQ broken during inflation

axion populated with misalignment mechanism (possibly DM)

- in the GUT scenario, parametrically lighter metastable NGBs

$$\delta m_{\tilde{a}}^2 \sim \frac{g_{\rm GUT}^2}{16\pi^2} \frac{\Lambda_{\rm DC}^4}{M_{\rm GUT}^2}$$

can leave imprints in cosmological observables

High-quality axion summary

Summary:

- Chiral model with dynamical generation of scales
- Strong CP solved by the QCD axion
- PQ is an high quality accidental symmetry through gauge protection
- Possibly DM
- Compatibility with SU(5) unified dynamics

Outlook:

Observational distinctive signatures from pseudo-NGB?

Backup Slides

High quality axion models classification

GUT		$N_{\rm DC} = 5$			$N_{\rm DC} = 4$	
n_{max}	10	15	20	10	15	20
AC solutions	77	189	341	77	189	341
HQ axions, $(1, \overline{5}, 10)$	22	68	150	9	31	82
Robust HQ axions, $(1, \overline{5}, 10)$	4	16	47	0	5	22
HQ axions, (1, 5, 10)	14	44	99	2	12	33
Robust HQ axions, $(1, 5, 10)$	3	16	36	0	7	21
No $d \leq 8$ operators	0	1	10	0	0	0

QCD			$N_{\rm DC} = 3$	
	$n_{ m max}$	10	15	20
	AC solutions	16	40	96
	HQ axions, $(1, \overline{3}, 6)$	3	14	50
	HQ axions, $(1, 3, 6)$	4	17	50
	No $d \leq 8$ operators	0	1	8