

Recent Progress and Plan of PandaX Experiment

Ning Zhou Shanghai Jiao Tong University 2021-08-26

Dark matter searches

• Direct detection, indirect detection, collider search

thermal freeze-out (early Univ.) indirect detection (now)

production at colliders

Dark matter direct detection

- Solar system in the dark matter halo
- Detection of incoming dark matter scattering off target atom
 - Nuclear recoil (NR) signature
 - Electronic recoil (ER) signature
 - Small and rare signals: underground laboratory

DARK MATTER OVERVIEW: COLLIDER, DIRECT AND INDIRECT DETECTION SEARCHES -QUEIROZ, FARINALDO S. ARXIV:1605.08788

ESO / L. Calçada.

Ning Zhou, SUSY 2021, 2021-08-26

Global efforts

• Multi-tonne scale direct detection experiments

China Jinping Underground Laboratory (CJPL)

- Deepest
 - 6800 m.w.e.
 - $< 0.2 \text{ muons/m}^2/\text{day}$
- Horizontal access
 - 9 km long tunnel

CJPL-II

- 8 new experiment halls
 - L: 65m
 - H: 14m
 - W: 14m

PandaX collaboration

Ning Zhou, SUSY 2021, 2021-08-26

PandaX experiment

- Dual-phase Xenon TPC
 - Large scale target, precise energy and 3D-positon reconstruction
 - Xenon self-shielding, NR and ER discrimination power

(S2/S1)_{NR}<<(S2/S1)_{ER}

Multi-site scattering background (ER or NR)

PandaX experiment

Ning Zhou, SUSY 2021, 2021-08-26

PandaX-II: electron scatte Energy (keV)

- Signal: axions, neutrino magnetic moment
- Major background spectra obtained from calibration data directly

XENON17

Ning Zhou, SUSY 2021, 2021-08-26

Red giant

XENON1T

Red giant

0.4

PandaX-II: WIMP-electron scattering

- light WIMP scattering with electrons
- S2-only analysis: effective threshold 80eV
- 15-30 MeV/c² WIMP: strongest constraints

PRL 126, 211803 (2021)

Ning Zhou, SUSY 2021, 2021-08-26

PandaX-II: cosmic ray boosted DM S. Ge, J. Liu, Q. Y, N. Zhou PRL 126 (2021) 9, 091804

- Light DM with cosmic ray boosting
- Signature: diurnal modulation
- Using events below NR median
 - 25 events (expected 26.6 background)

45

35

25

 $T_r > 3 \text{keV}$

 $T_r \geq 3 {\rm keV}$

 $(\sigma_{\chi p} = 10^{-32} \text{ cm}^2)$

 $(\sigma_{\chi p} = 3 \times 10^{-32} \text{ cm}^2)$

 $T_{\chi} \ge T_{\chi}^{min}$ ($\sigma_{\chi p} = 10^{-32} \text{ cm}^2$

 $\begin{array}{l} T_{\chi} \geq T_{\chi}^{min} \\ (\sigma_{\chi p} = 3 \times 10^{-32} \ \mathrm{cm}^2 \end{array}$

Survival Probability [%]

20

PandaX-4T @ CJPL-II

- 13m H x 10m D ~ 900 m³
- Sensitive volume: 3.7-tonne LXe
 - 1.2m H x 1.2m D
- 3-inch PMTs: 169 top / 199 bottom

PandaX-4T major milestones

• **2018/04/02**

- B2 hall construction started
- **2019/08/19**
 - infrastructure completed
 - detector installation started
- **2020/05/06**
 - offline xenon distillation completed
- **2020/05/28**
 - installation completed
- 2020/11/28 2021/04/16
 - commissioning run

PandaX-4T subsystems

PandaX-4T commissioning

• Stable data running period: 95.0 calendar days

PandaX-4T major improvement

- Triggerless DAQ: low threshold
 - read out pulses above 20 ADC (~1/3 PE)
- ²²²Rn: ~ 5 uBq/kg
 - 1/6 of PandaX-II
- ⁸⁵Kr: ~0.3 ppt mol/mol
 - 1/20 of PandaX-II

Date

Ning Zhou, SUSY 2021, 2021-08-26

µBq/kg

Energy reconstruction

• Energy resolution @ 41.5 keV: 6.8%

50

55

 $E = 13.7 \text{eV} \times (\frac{\text{S1}}{\text{PDE}} +$

92.6±5.4

90

60

50

800

600

400

QY[PE/keV]

Ning Zhou, SUSY 2021, 2021-08-26

9.0±0.2

3-5

 $S2_b$

 $\overline{\text{EEE} \times \text{SEG}}$

4.6±0.1

Detector response calibration

E

- Light/charge yield, as well as fluctuations
 - Deuteron-deuteron (DD) neutron data used together with AmBe
 - Rn data

Efficiencies obtained from calibration data

- Same S1 and S2 efficiency obtained from the ER and NR data
- Plateaued efficiency ~ 80%

Fiducial volume determination

- Based on background simulation
 - Uniform ER (including tritium) normalization from data
- Define FoM = sqrt(B)/M
- Best FV = 2.67 tonne
- FV cuts in the data maintaining the same FV (correcting for reconstruction bias)

Tritium background

- Tritium spectrum identified in the data
- Likely originated from a tritium calibration at the end of PandaX-II
- Level floating in the final dark matter fit: ~ 5(0.3)x10⁻²⁴ (mol/mol)

Background composition

- Background per unit target is improved from PandaX-II by 4 times (<10 keV)
- Expected below-NR-median events: 9.8 (0.6) evts

Component	Nominal (evts)
³ T (from fit to data)	532 (32)
Flat ER [*] (18-30keV side band)	492 (31)
Rn	347 (190)
Kr	53 (34)
Material	40 (5)
pp neutrino	37 (8)
Xe136	31 (6)
Xe127	8 (1)
Neutron	0.9 (0.5)
Neutron-X	0.2 (0.1)
Surface	0.5 (0.1)
Accidental	2.4 (0.5)
B8	0.6 (0.3)
Sum	1037 (45)

DM candidates

- FV: 2.67 tonne
- Exposure: 0.63 tonne-year
- Selection:
 - S1: 2 135 PE
 - S2raw: > 80 PE
 - S2 < 20000
- Candidates
 - 1058 candidates
 - 6 below NR median line

Position distributions

- **E**.
- Events uniformly distributed in the FV, expected if dominated by tritium and radon events.

Spectral comparison

- Fit data with unbinned likelihood with all signal/background PDFs in (S1, S2_b)
- No excess found, backgroundonly p-value 0.58
- Spectrum agrees with expected background

WIMP-nucleon SI exclusion limits

6.

- Exposure: 0.63 tonne-year
- Sensitivity improved from PandaX-II final analysis by 2.9 times (30 GeV/c²)
- Our limit is ~1.24 times stronger than XENON1T around 30 GeV/c²
- Dived into previously unexplored territory!
- Approaching the "low E" neutrino floor

SUSY benchmark contours (MasterCode) EPJC 78, no.3, 256 (2018), EPJC 78, 158 (2018)

Next plan

- Xenon distillation to remove radioactive impurity like tritium
- Multiple physics tasks: DM, Xe136 0vDBD, solar neutrino, etc

Next-generation detector R&D

• Low background PMT, xenon isotope separation, etc

Unit: mBq/pc	R12699 (30T)	R11410 (4T)
Co-60	0.76±0.10	1.16±0.72 <2.34
Cs-137	0.02±0.08 <0.16	0.52±0.81 <1.85
K-40	26.42±1.78	8.37±8.47 <22.31
Th-232(early)	0.06±0.25 <0.46	4.33±2.16 <7.88
Th-232(late)	0.00±0.08 <0.12	1.50±0.96 <3.08
U-235	0.00±0.68 <1.11	13.13±8.53 <27.16
U-238(early)	3.32±1.84 <6.35	26.29±16.90 <54.09
U-238(late)	0.60±0.14	2.05±1.18 <3.99

Neutrino floor

- Non-uniform atmosphere neutrinos distribution, due to magnetic field
- CJPL has a unique advantage towards the "neutrino floor"

Site	Flux (m^2 sec sr GeV)^-1 [100MeV]
Kamioka	4249
Gran Sasso	7304
Sudbury	11879
Frejus	8215
INO	2554
South Pole	12001
Pythasalmi	12208
Homestake	11774
JUNO	2871

Honda et al. arXiv: 1502.03916 neutrino flux

Summary

- PandaX-II has completed successfully in 2019
- PandaX-4T, x10 more sensitive than PandaX-II
- PandaX-4T commissioning has completed
- Currently, PandaX-4T is performing an offline tritium removal, aiming to reduce the electron recoil background
- In parallel, developing plan for the next generation experiment at CJPL
- Stay tuned!

Today we hold the long cord in our hands,

when shall we bind fast the Grey Dragon?

THANK YOU