Why SUSY is great

Hitoshi Murayama (Berkeley, Kavli IPMU) SUSY 2021, Aug 28, 2021

The XXVIIIth International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2021)

3-8 July 2016 The University of Melbourne Australia/Melbourne timezone

8. A

SM measurements

ments of different production processes continue and more and more different entering the second second second The second content of the second se

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

518	atus: July 2021						$\int \mathcal{L} dt = (3$	3.6 − 139) fb ^{−1}	$\sqrt{s} = 8, 13 \text{ TeV}$
	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	D ⁻¹] Limit			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4j -2j $\ge 3j$ -3j 2j/1J $\ge 1b, \ge 1J/2$ $\ge 2b, \ge 3j$	Yes - - - Yes Yes Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1	MD Ms Mth Mth GKK mass 4.5 TeV GKK mass 2.3 TeV GKK mass 2.3 TeV GKK mass 3.8 TeV KK mass 3.8 TeV KK mass 1.8 TeV	11.2 Te 8.6 TeV 8.9 TeV 9.55 TeV	$ \begin{array}{l} \mathbf{V} n=2 \\ n=3 \; \text{HLZ NLO} \\ n=6 \\ n=6, \; M_D=3 \; \text{TeV, rot BH} \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=1.0 \\ k/\overline{M}_{Pl}=1.0 \\ \Gamma/m=15\% \\ \text{Tier (1,1), } \mathcal{B}(\mathcal{A}^{(1,1)} \rightarrow tt)=1 \end{array} $	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to tb \\ \text{HVT } W' \to WZ \to \ell\nu qq \text{ model } P \\ \text{HVT } Z' \to ZH \text{ model } P \\ \text{HVT } W' \to WH \text{ model } P \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$2 e, \mu 2 \tau - 0 e, \mu 1 e, \mu 1 \tau - B 1 e, \mu 0 - 2 e, \mu 0 e, \mu 2 \mu$	$\begin{array}{c} - \\ 2 b \\ \geq 1 b, \geq 2 J \\ - \\ 2 j / 1 J \\ 1 - 2 b \\ \geq 1 b, \geq 2 J \\ 1 - 2 b \\ \geq 1 b, \geq 2 J \\ 1 J \end{array}$	- Yes Yes Yes Yes Yes	139 36.1 139 139 139 139 139 139 139 139 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 4.1 TeV W' mass 6.0 TeV W' mass 5.0 TeV W' mass 5.0 TeV W' mass 4.1 TeV W' mass 6.0 TeV W' mass 5.0 TeV W' mass 3.2 TeV W' mass 3.2 TeV W' mass 5.0 TeV W' mass 5.0 TeV Wr mass 5.0 TeV	V TeV /	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 ATLAS-CONF-2020-043 2007.05293 1904.12679
C	CI qqqq CI ℓℓqq CI eebs CI μμbs CI tttt	- 2 e, μ 2 e 2 μ ≥1 e,μ	2 j - 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ Λ Λ Λ Δ		$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL}^- \\ \textbf{35.8 TeV} & \eta_{LL}^- \\ g_* = 1 \\ C_{4t} = 4\pi \end{array}$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
DM	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac DM) Pseudo-scalar med. 2HDM+a Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	0 e, μ, τ, γ 0 e, μ, τ, γ 1) 0 e, μ multi-channe 0-1 e, μ	1 – 4 j 1 – 4 j 2 b 1 b, 0-1 J	Yes Yes Yes Yes	139 139 139 139 36.1	mmed 2.1 TeV mmed 376 GeV mmed 3.1 TeV mmed 560 GeV mode 3.4 TeV		$\begin{array}{l} g_q = 0.25, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ g_q = 1, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ {\rm tan} \ \beta = 1, \ g_Z = 0.8, \ m(\chi) = 100 \ {\rm GeV} \\ {\rm tan} \ \beta = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	2102.10874 2102.10874 ATLAS-CONF-2021-006 ATLAS-CONF-2021-036 1812.09743
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	$2 e$ 2μ 1τ $0 e, \mu$ $\geq 2 e, \mu, \geq 1 \tau$ $0 e, \mu, \geq 1 \tau$	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ 2 \ b \\ \geq 2 \ j, \geq 2 \ b \\ \geq 2 \ j, \geq 2 \ b \\ \geq 1 \ j, \geq 1 \ b \\ 0 - 2 \ j, 2 \ b \end{array} $	Yes Yes Yes Yes - Yes	139 139 139 139 139 139	LQ mass 1.8 TeV LQ mass 1.7 TeV LQ" mass 1.2 TeV LQ" mass 1.24 TeV LQ" mass 1.43 TeV LQ" mass 1.26 TeV		$\begin{split} \beta &= 1\\ \beta &= 1\\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^u \to t\nu) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^d \to b\nu) &= 1 \end{split}$	2006.05872 2006.05872 ATLAS-CONF-2021-008 2004.14060 2101.11582 2101.12527
quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Zt + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ \ T \rightarrow Ht/Zt \\ VLQ \ Y \rightarrow Wb \\ VLQ \ B \rightarrow Hb \end{array} $	$\begin{array}{c} 2e/2\mu/\geq 3e,\mu\\ \text{multi-channe}\\ 2(SS)/\geq 3e,\mu\\ 1e,\mu\\ 1e,\mu\\ 0e,\mu \end{array}$	≥1 b, ≥1 j $ι ≥1 b, ≥1 j ≥1 b, ≥3 j ≥1 b, ≥1 j ≥2b, ≥1j, ≥$	– Yes Yes Yes IJ –	139 36.1 36.1 139 36.1 139	T mass 1.4 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV T mass 1.8 TeV Y mass 1.85 TeV B mass 2.0 TeV		SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ SU(2) singlet, $\kappa_T = 0.5$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ SU(2) doublet, $\kappa_B = 0.3$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018
fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j -	- - - -	139 36.7 36.1 20.3 20.3	q* mass 6. q* mass 5.3 Te b* mass 2.6 TeV ℓ* mass 3.0 TeV ν* mass 1.6 TeV	.7 TeV :V	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	2,3,4 e, µ 2 µ 2,3,4 e, µ (SS 2,3,4 e, µ (SS 3 e, µ, τ - -		Yes Yes - - - - 3 TeV	139 36.1 139 36.1 20.3 36.1 34.4	Nº mass 910 GeV N _R mass 3.2 TeV H ^{±±} mass 350 GeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV multi-charged particle mass 1.22 TeV monopole mass 2.37 TeV		$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell\tau) = 1$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2021-023 1809.11105 2101.11961 1710.09748 1411.2921 1812.03673 1905.10130
		rtial data	full d	ata		10 ⁻¹ 1	1() Mass scale [TeV]	

ATLAS Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Standard Model

©Particle Fever

Why SUSY

- mathematically interesting
- string theory needs it
- rationale for scalars
- helps stabilize inflaton potential
- gauge coupling unification
- dark matter candidate
- hierarchy (naturalness) problem
- fun for colliders
- baryogenesis?
- cosmological constant? $|0^{-120}$ to $|0^{-60}$

History of Unification

Grand Unification

Hyper-Kamiokande: $p \rightarrow e^{+}\pi^{0}$ DUNE: $p \rightarrow K^{+}\overline{v}$

LHC score card

origin of EWSB Higgs discover : * only a partial answer • naturalness None dark matter None **EW** baryogenesis No new CP vict 11 unexpected • Perhaps??? 750 GeV diphoton???

Supersymmetry

Squarks

The following data are averaged over all light flavors, presumably u, d, s, c with both chiralities. For flavor-tagged data, see listings for Stop and Sbottom. Most results assume minimal supergravity, an untested hypothesis with only five parameters. Alternative interpretation as extra dimensional particles is possible. See KK particle listing.

SQUARK MASS

<u>VALUE (GeV)</u> 538±10	DOCUMENT ID OUR FIT	TECN	<u>COMMENT</u> mSUGRA assumptions
532±11	¹ ABBIENDI 11D	CMS	Missing ET with mSUGRA assumptions
541±14	² ADLER 110	ATLAS	Missing ET with mSUGRA assumptions
• • • We do not use	the following data for	averages, fits,	limits, etc • • •
652±105	³ ABBIENDI 11K	CMS	extended mSUGRA with 5 more parameters

¹ABBIENDI 11D assumes minimal supergravity in the fits to the data of jets and missing energies and set $A_0=0$ and $\tan\beta=3$. See Fig. 5 of the paper for other choices of A_0 and $\tan\beta$. The result is correlated with the gluino mass M_3 . See listing for gluino.

²ADLER 11O uses the same set of assumptions as ABBIENDI 11D, but with tan $\beta = 5$. ³ABBIENDI 11K extends minimal supergravity by allowing for different scalar massessquared for Hu, Hd, 5* and 10 scalars at the GUT scale.

MODE	<u>BR(%)</u>	DOCUMENT ID	TECN	COMMENT
j+miss	32±5	ABE 10U	ATLAS	
j l+miss	73±10	ABE 10U	ATLAS	lepton universality
j e+miss	22±8	ABE 10U	ATLAS	
j μ +miss	25±7	ABE 10U	ATLAS	
q χ^+	seen	ABE 10U	ATLAS	

SQUARK DECAY MODES

Electron mass is natural by doubling #particles

• Electron creates a force to repel itself

$$\Delta m_e c^2 \sim \frac{e^2}{r_e} \sim \text{GeV} \frac{10^{-17} \text{cm}}{r_e}$$

- 10⁻⁴ fine-tuning?
- quantum mechanics and anti-matter

$$\Rightarrow$$
 only 10% of mass even

for Planck-size $r_e \sim 10^{-33}$ cm

$$\Delta m_e \sim m_e \frac{\alpha}{4\pi} \log(m_e r_e)$$

Higgs mass is natural by doubling #particles?

- Higgs also repels itself
- Double #particles again
 ⇒ superpartners
- only log sensitivity to UV
- Standard Model made consistent up to higher energies

 $\Delta m_H^2 \sim \frac{\alpha}{4\pi} m_{SUSY}^2 \log(m_H r_H)$

still take it seriously

13

Naturalness works!

- Inflation
 - horizon problem
 - flatness problem

The New York Times

Science

WORLD	U.S.	N.Y. / REGION	BUSINESS	TECHNOLOGY	SCIENCE	HEALTH
ENVIRON						

315 Physicists Report Failure In Search for Supersymmetry

By MALCOLM W. BROWNE Published: January 5, 1993

Three hundred and fifteen physicists worked on the experiment.

Their apparatus included the Tevatron, the world's most powerful particle accelerator, as well as a \$65 million detector weighing as

Why not SUSY

- flavor problem
- CP problem
- gravitino problem
- proton decay (both GUT and M_{Pl})
- SUSY breaking models tend to be contrived
- triplet-doublet splitting in SUSY GUT
- $m_h = 125 \text{GeV}$ too heavy for MSSM
- no experimental signature

rationale for scalars

- Higgs boson is the only spin 0 particle in the standard model
 - it is faceless
 - one of its kind, no context
 - but does the most important job
- looks very artificial
- we still don't know dynamics behind the Higgs condensate
- Higgsless theories: now dead

Why Scalar Bosons?

Supersymmetry

- Higgs just one of many scalar bosons
- SUSY loops make m_h^2 negative

composite

- spins cancel among constituents
- condensate by a strong attractive force, holography

Extra dimension

- Higgs spinning in extra dimensions
- new forces from particles running in extra D

another "naturalness" argument

By A Pomarol

Nima's anguish

 $m_{H}=125$ GeV seems almost maliciously designed to prolong the agony of BSM theorists....

dream case for experiments

European Strategy Update 2020 the highest priority: Higgs factory

can measure them all!

portals

cf.
$$\frac{1}{\Lambda^{n+4}}\mathcal{O}_nF_{\mu\nu}F^{\mu\nu}$$

Rare effects from high energies Effects of high-energy physics mostly

disappear by power suppression

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \cdots$$

can be classified systematically

 $\mathcal{L}_5 = (LH)(LH) \to \frac{1}{\Lambda} (L\langle H \rangle)(L\langle H \rangle) = m_{\nu} \nu \nu$

 $\mathcal{L}_{6} = QQQL, \bar{L}\sigma^{\mu\nu}W_{\mu\nu}Hl, \epsilon_{abc}W_{\nu}^{a\mu}W_{\lambda}^{b\nu}W_{\mu}^{c\lambda},$ $(H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H), B_{\mu\nu}H^{\dagger}W^{\mu\nu}H, \cdots$

Power of Expedition

Effective Operators

- Classification surprisingly difficult question
- In the case of the Standard Model
 - Weinberg (1980) on D=6 \$\$, D=5 \$\$
 - Buchmüller-Wyler (1986) on D=6 ops
 80 operators for N_f=1, B, L conserving
 - Grzadkowski et al (2010) removed redundancies and discovered one missed
 - 59 operators for $N_f = I, B, L$ conserving
 - redundancies due to EOM, IBP
 - Mahonar et al (2013) general N_f
 - Lehman-Martin (2014,15) D=7 for general N_f , D=8 for $N_f=1$ (incorrect)

Main idea

Brian Henning, Xiaochuan Lu, Tom Melia, HM

- Take kinetic terms as the zeroth order Lagrangian $(\partial \phi)^2$, $\bar{\psi} i \partial \psi$, $(F_{\mu\nu})^2$
- Classically, it is conformally invariant under SO(4,2)≃SO(6,C)
- Operator-State correspondence in CFT tells us that operators fall into representations of the conformal group
 - equation of motion: short multiplets
 - remove total derivatives: primary states

 $H(\mathcal{D},\phi_1,\cdots,\phi_n) = \int d\mu_{\text{conf}} d\mu_{\text{gauge}} \sum_k \mathcal{D}^k \chi^*_{\Delta_0+k,0} PE\left[\frac{\phi_1}{\mathcal{D}^{d_1}}\chi_1\right] \cdots PE\left[\frac{\phi_n}{\mathcal{D}^{d_n}}\chi_n\right]$

C

C

C

¢

Terminal — tcsh — ttys001

Ŧ

Generation Content Conten

D=8 operators

2*L^2*Ld^2*t^2 + 2*ee*ed*L*Ld*t^2 + ee^2*ed^2*t^2 + 2*d*dd*L*Ld*t^2 + 2* $d^{d} = e^{d^{t} + 2} + 2^{d^{2}} d^{2} + u^{2} + u^{2} + u^{2} + u^{2} + 2^$ $u^{ee} = 4^{t^2} + 4^{u^2} + 4^{u^2} + 4^{u^2} + u^{2^2} + u^{2^2} + 2^{u^2} + 2^{u^$ dd*ee*L*t^2 + 3*0d*ud*ed*Ld*t^2 + 2*0d*u*d*Ld*t^2 + 3*0d^2*ud*dd*t^2 + Qd^2*u*ee*t^2 + Qd^3*Ld*t^2 + 2*Q*d*ed*Ld*t^2 + 2*Q*ud*dd*L*t^2 + 3*Q*u* ee*L*t^2 + 4*0*0d*L*Ld*t^2 + 2*0*0d*ee*ed*t^2 + 4*0*0d*d*dd*t^2 + 4*0*0d $u^{t^2} + Q^{2*}ud^{t^2} + Q^{2*}ud^{t^2} + 3^{t^2}u^{t^2} + 4^{t^2} + 4^{t^2}u^{t^2} + Q^{3*}L^{t^2}$ + Wr*L^2*Ld^2 + Wr*ee*ed*L*Ld + Wr*d*dd*L*Ld + Wr*u*ud*L*Ld + Wr*Qd*dd* ee*L + 3*Wr*Od*ud*ed*Ld + Wr*Od*u*d*Ld + 3*Wr*Od^2*ud*dd + Wr*Od^2*u*ee + 2*Wr*0d^3*Ld + Wr*0*d*ed*Ld + Wr*0*ud*dd*L + 3*Wr*0*0d*L*Ld + Wr*0*0d *ee*ed + 2*Wr*0*0d*d*dd + 2*Wr*0*0d*u*ud + 2*Wr*0^2*0d^2 + Wr^2*L*Ld*t + Wr^2*0*0d*t + 2*Wr^4 + Wl*L^2*Ld^2 + Wl*ee*ed*L*Ld + Wl*d*dd*L*Ld + Wl*u*ud*L*Ld + Wl*Od*dd*ee*L + Wl*Od*u*d*Ld + Wl*O*d*ed*Ld + Wl*O*ud*dd* L + 3*Wl*0*u*ee*L + 3*Wl*0*0d*L*Ld + Wl*0*0d*ee*ed + 2*Wl*0*0d*d*dd + 2* Wl*0*0d*u*ud + Wl*0^2*ud*ed + 3*Wl*0^2*u*d + 2*Wl*0^2*0d^2 + 2*Wl*0^3*L + 2*Wl*Wr*L*Ld*t + Wl*Wr*ee*ed*t + Wl*Wr*d*dd*t + Wl*Wr*u*ud*t + 2*Wl* Wr*0*0d*t + Wl^2*L*Ld*t + Wl^2*0*0d*t + 2*Wl^2*Wr^2 + 2*Wl^4 + Gr*d*dd*L *Ld + Gr*d*dd*ee*ed + Gr*d^2*dd^2 + 3*Gr*ud^2*dd*ed + Gr*u*ud*L*Ld + Gr* u*ud*ee*ed + 4*Gr*u*ud*d*dd + Gr*u^2*ud^2 + Gr*0d*dd*ee*L + 3*Gr*0d*ud* ed*Ld + 2*Gr*0d*u*d*Ld + 6*Gr*0d^2*ud*dd + Gr*0d^2*u*ee + 2*Gr*0d^3*Ld + Gr*0*d*ed*Ld + 2*Gr*0*ud*dd*L + 2*Gr*0*0d*L*Ld + Gr*0*0d*ee*ed + 4*Gr *0*0d*d*dd + 4*Gr*0*0d*u*ud + Gr*0^2*ud*ed + 2*Gr*0^2*0d^2 + Gr*Wr*0*0d* t + Gr*Wl*O*Od*t + Gr^2*d*dd*t + Gr^2*u*ud*t + Gr^2*0*Od*t + 2*Gr^2*Wr^2 + Gr^2*Wl^2 + 3*Gr^4 + Gl*d*dd*L*Ld + Gl*d*dd*ee*ed + Gl*d^2*dd^2 + Gl* u*ud*L*Ld + Gl*u*ud*ee*ed + 4*Gl*u*ud*d*dd + 3*Gl*u^2*d*ee + Gl*u^2*ud^2 + Gl*Qd*dd*ee*L + 2*Gl*Qd*u*d*Ld + Gl*Qd^2*u*ee + Gl*Q*d*ed*Ld + 2*Gl*Q *ud*dd*L + 3*Gl*0*u*ee*L + 2*Gl*0*0d*L*Ld + Gl*0*0d*ee*ed + 4*Gl*0*0d*d* dd + 4*Gl*Q*Qd*u*ud + Gl*Q^2*ud*ed + 6*Gl*Q^2*u*d + 2*Gl*Q^2*Qd^2 + 2*Gl *Q^3*L + Gl*Wr*Q*Qd*t + Gl*Wl*Q*Qd*t + Gl*Gr*L*Ld*t + Gl*Gr*ee*ed*t + 3* Gl*Gr*d*dd*t + 3*Gl*Gr*u*ud*t + 3*Gl*Gr*0*0d*t + Gl*Gr*Wl*Wr + Gl^2*d*dd *t + Gl^2*u*ud*t + Gl^2*0*0d*t + Gl^2*Wr^2 + 2*Gl^2*Wl^2 + 3*Gl^2*Gr^2 + 3*Gl^4 + Br*ee*ed*L*Ld + Br*d*dd*L*Ld + Br*d*dd*ee*ed + 2*Br*ud^2*dd* ed + Br*u*ud*L*Ld + Br*u*ud*ee*ed + 2*Br*u*ud*d*dd + Br*Od*dd*ee*L + 3* Br*0d*ud*ed*Ld + Br*0d*u*d*Ld + 3*Br*0d^2*ud*dd + Br*0d^3*Ld + Br*0*d*ed *Ld + Br*Q*ud*dd*L + 2*Br*Q*Qd*L*Ld + Br*Q*Qd*ee*ed + 2*Br*Q*Qd*d*dd + 2 *Br*O*Od*u*ud + Br*O^2*ud*ed + Br*Wr*L*Ld*t + Br*Wr*O*Od*t + Br*Wl*L*Ld* t + Br*Wl*O*Od*t + Br*Gr*d*dd*t + Br*Gr*u*ud*t + Br*Gr*O*Od*t + Br*Gr^3 + Br*Gl*d*dd*t + Br*Gl*u*ud*t + Br*Gl*0*0d*t + Br*Gl^2*Gr + 2*Br^2*Wr^2 + Br^2*Wl^2 + 2*Br^2*Gr^2 + Br^2*Gl^2 + Br^4 + Bl*ee*ed*L*Ld + Bl*d*dd* L*Ld + Bl*d*dd*ee*ed + Bl*u*ud*L*Ld + Bl*u*ud*ee*ed + 2*Bl*u*ud*d*dd + 2*Bl*u^2*d*ee + Bl*Qd*dd*ee*L + Bl*Qd*u*d*Ld + Bl*Qd^2*u*ee + Bl*Q*d*ed* Ld + Bl*0*ud*dd*L + 3*Bl*0*u*ee*L + 2*Bl*0*0d*L*Ld + Bl*0*0d*ee*ed + 2* Bl*Q*Qd*d*dd + 2*Bl*Q*Qd*u*ud + 3*Bl*Q^2*u*d + Bl*Q^3*L + Bl*Wr*L*Ld*t + Bl*Wr*O*Od*t + Bl*Wl*L*Ld*t + Bl*Wl*O*Od*t + Bl*Gr*d*dd*t + Bl*Gr*u* ud*t + Bl*Gr*Q*Qd*t + Bl*Gl*d*dd*t + Bl*Gl*u*ud*t + Bl*Gl*Q*Qd*t + Bl*Gl *Gr^2 + Bl*Gl^3 + Bl*Br*L*Ld*t + Bl*Br*ee*ed*t + Bl*Br*d*dd*t + Bl*Br*u* ud*t + Bl*Br*O*Od*t + Bl*Br*Wl*Wr + Bl*Br*Gl*Gr + Bl^2*Wr^2 + 2*Bl^2* W1^2 + B1^2*Gr^2 + 2*B1^2*G1^2 + B1^2*Br^2 + B1^4 + 3*Hd*ee*L^2*Ld*t + Hd*ee^2*ed*L*t + 3*Hd*d*dd*ee*L*t + 3*Hd*ud*d*ed*Ld*t + 2*Hd*ud^2*dd*L*t + 2*Hd*u*d^2*Ld*t + 3*Hd*u*ud*ee*L*t + 6*Hd*0d*ud*L*Ld*t + 3*Hd*0d*ud* ee*ed*t + 6*Hd*0d*ud*d*dd*t + 3*Hd*0d*u*d*ee*t + 3*Hd*0d*u*ud^2*t + 3*Hd *Qd^2*d*Ld*t + Hd*Qd^3*ee*t + 6*Hd*Q*d*L*Ld*t + 3*Hd*Q*d*ee*ed*t + 3*Hd* Q*d^2*dd*t + 2*Hd*Q*ud^2*ed*t + 6*Hd*Q*u*ud*d*t + 6*Hd*Q*Qd*ee*L*t + 6* Hd*0*0d^2*ud*t + 3*Hd*0^2*ud*L*t + 6*Hd*0^2*0d*d*t + Hd*Wr*ee*L*t^2 + 2* Hd*Wr*Qd*ud*t^2 + Hd*Wr*Q*d*t^2 + Hd*Wr^2*ee*L + 2*Hd*Wr^2*Qd*ud + Hd* Wr^2*O*d + 2*Hd*Wl*ee*L*t^2 + Hd*Wl*Od*ud*t^2 + 2*Hd*Wl*O*d*t^2 + 2*Hd* W1^2*ee*L + Hd*W1^2*Od*ud + 2*Hd*W1^2*O*d + 2*Hd*Gr*Od*ud*t^2 + Hd*Gr*O* d*t^2 + 2*Hd*Gr*Wr*Od*ud + Hd*Gr*Wr*O*d + Hd*Gr^2*ee*L + 3*Hd*Gr^2*Od*ud + 2*Hd*Gr^2*O*d + Hd*Gl*Od*ud*t^2 + 2*Hd*Gl*O*d*t^2 + Hd*Gl*Wl*Od*ud + 2*Hd*Gl*Wl*Q*d + Hd*Gl^2*ee*L + 2*Hd*Gl^2*Qd*ud + 3*Hd*Gl^2*Q*d + Hd*Br* ee*L*t^2 + 2*Hd*Br*0d*ud*t^2 + Hd*Br*0*d*t^2 + Hd*Br*Wr*ee*L + 2*Hd*Br*

f =

Wr*Od*ud + Hd*Br*Wr*O*d + 2*Hd*Br*Gr*Od*ud + Hd*Br*Gr*O*d + Hd*Br^2*ee*L + Hd*Br^2*Qd*ud + Hd*Br^2*Q*d + 2*Hd*Bl*ee*L*t^2 + Hd*Bl*Qd*ud*t^2 + 2* Hd*Bl*O*d*t^2 + 2*Hd*Bl*Wl*ee*L + Hd*Bl*Wl*Od*ud + 2*Hd*Bl*Wl*O*d + Hd* Bl*Gl*Od*ud + 2*Hd*Bl*Gl*O*d + Hd*Bl^2*ee*L + Hd*Bl^2*Od*ud + Hd*Bl^2*O* $d + Hd^2*ee^2L^2 + Hd^2*ud^{+}C^{+} + Hd^2*ud^{+}C^{+} + Hd^2*ud^{+}C^{+} + Hd^{+}C^{+} + Hd^{+}C^$ *Hd^2*Qd^2*ud^2 + 2*Hd^2*Q*d*ee*L + 2*Hd^2*Q*Qd*ud*d + 2*Hd^2*Q^2*d^2 + Hd^2*Wr*ud*d*t + Hd^2*Wl*ud*d*t + Hd^2*Gr*ud*d*t + Hd^2*Gl*ud*d*t + Hd^2 *Br*ud*d*t + Hd^2*Bl*ud*d*t + 3*H*ed*L*Ld^2*t + H*ee*ed^2*Ld*t + 3*H*d* dd*ed*Ld*t + 2*H*ud*dd^2*L*t + 3*H*u*dd*ee*L*t + 3*H*u*ud*ed*Ld*t + 2*H* u^2*d*Ld*t + 6*H*0d*dd*L*Ld*t + 3*H*0d*dd*ee*ed*t + 3*H*0d*dd^2*t + 6* H*0d*u*ud*dd*t + 2*H*0d*u^2*ee*t + 3*H*0d^2*u*Ld*t + 3*H*0*ud*dd*ed*t + 6*H*0*u*L*Ld*t + 3*H*0*u*ee*ed*t + 6*H*0*u*d*dd*t + 3*H*0*u^2*ud*t + 6*H *0*0d*ed*Ld*t + 6*H*0*0d^2*dd*t + 3*H*0^2*dd*L*t + 6*H*0^2*0d*u*t + H* 0^3*ed*t + 2*H*Wr*ed*Ld*t^2 + 2*H*Wr*0d*dd*t^2 + H*Wr*0*u*t^2 + 2*H*Wr^2 *ed*Ld + 2*H*Wr^2*Od*dd + H*Wr^2*O*u + H*Wl*ed*Ld*t^2 + H*Wl*0d*dd*t^2 + 2*H*Wl*O*u*t^2 + H*Wl^2*ed*Ld + H*Wl^2*Od*dd + 2*H*Wl^2*O*u + 2*H*Gr* Qd*dd*t^2 + H*Gr*0*u*t^2 + 2*H*Gr*Wr*Qd*dd + H*Gr*Wr*0*u + H*Gr^2*ed*Ld + 3*H*Gr^2*0d*dd + 2*H*Gr^2*0*u + H*Gl*0d*dd*t^2 + 2*H*Gl*0*u*t^2 + H* Gl*Wl*Qd*dd + 2*H*Gl*Wl*Q*u + H*Gl^2*ed*Ld + 2*H*Gl^2*Qd*dd + 3*H*Gl^2*Q *u + 2*H*Br*ed*Ld*t^2 + 2*H*Br*0d*dd*t^2 + H*Br*0*u*t^2 + 2*H*Br*Wr*ed* Ld + 2*H*Br*Wr*Od*dd + H*Br*Wr*O*u + 2*H*Br*Gr*Od*dd + H*Br*Gr*O*u + H* Br^2*ed*Ld + H*Br^2*Od*dd + H*Br^2*O*u + H*Bl*ed*Ld*t^2 + H*Bl*Od*dd*t^2 + 2*H*Bl*Q*u*t^2 + H*Bl*Wl*ed*Ld + H*Bl*Wl*Qd*dd + 2*H*Bl*Wl*O*u + H*Bl *Gl*Od*dd + 2*H*Bl*Gl*O*u + H*Bl^2*ed*Ld + H*Bl^2*Od*dd + H*Bl^2*O*u + 4 *H*Hd*L*Ld*t^3 + 2*H*Hd*L^2*Ld^2 + 2*H*Hd*ee*ed*t^3 + 2*H*Hd*ee*ed*L*Ld + H*Hd*ee^2*ed^2 + 2*H*Hd*d*dd*t^3 + 2*H*Hd*d*dd*L*Ld + H*Hd*d*dd*ee*ed + H*Hd*d^2*dd^2 + H*Hd*ud^2*dd*ed + 2*H*Hd*u*ud*t^3 + 2*H*Hd*u*ud*L*Ld + H*Hd*u*ud*ee*ed + 2*H*Hd*u*ud*d*dd + H*Hd*u^2*d*ee + H*Hd*u^2*ud^2 + 2*H*Hd*Qd*dd*ee*L + 4*H*Hd*Qd*ud*ed*Ld + 2*H*Hd*Qd*u*d*Ld + 4*H*Hd*Qd^2* ud*dd + H*Hd*0d^2*u*ee + 2*H*Hd*0d^3*Ld + 2*H*Hd*0*d*ed*Ld + 2*H*Hd*0*ud *dd*L + 4*H*Hd*0*u*ee*L + 4*H*Hd*0*0d*t^3 + 5*H*Hd*0*0d*L*Ld + 2*H*Hd*0* Qd*ee*ed + 4*H*Hd*O*Qd*d*dd + 4*H*Hd*O*Qd*u*ud + H*Hd*Q^2*ud*ed + 4*H*Hd *0^2*u*d + 3*H*Hd*0^2*0d^2 + 2*H*Hd*0^3*L + 6*H*Hd*Wr*L*Ld*t + 2*H*Hd*Wr *ee*ed*t + 2*H*Hd*Wr*d*dd*t + 2*H*Hd*Wr*u*ud*t + 6*H*Hd*Wr*0*0d*t + 2*H* Hd*Wr^2*t^2 + H*Hd*Wr^3 + 6*H*Hd*Wl*L*Ld*t + 2*H*Hd*Wl*ee*ed*t + 2*H*Hd* Wl*d*dd*t + 2*H*Hd*Wl*u*ud*t + 6*H*Hd*Wl*Q*Qd*t + 2*H*Hd*Wl*Wr*t^2 + 2*H *Hd*Wl^2*t^2 + H*Hd*Wl^3 + 2*H*Hd*Gr*d*dd*t + 2*H*Hd*Gr*u*ud*t + 4*H*Hd* Gr*0*0d*t + H*Hd*Gr^2*t^2 + H*Hd*Gr^3 + 2*H*Hd*Gl*d*dd*t + 2*H*Hd*Gl*u* ud*t + 4*H*Hd*Gl*0*0d*t + H*Hd*Gl*Gr*t^2 + H*Hd*Gl^2 + H*Hd*Gl^3 + 4 *H*Hd*Br*L*Ld*t + 2*H*Hd*Br*ee*ed*t + 2*H*Hd*Br*d*dd*t + 2*H*Hd*Br*u*ud* t + 4*H*Hd*Br*0*0d*t + 2*H*Hd*Br*Wr*t^2 + H*Hd*Br*Wr^2 + H*Hd*Br*Wl*t^2 + H*Hd*Br^2*t^2 + 4*H*Hd*Bl*L*Ld*t + 2*H*Hd*Bl*ee*ed*t + 2*H*Hd*Bl*d*dd *t + 2*H*Hd*Bl*u*ud*t + 4*H*Hd*Bl*O*Od*t + H*Hd*Bl*Wr*t^2 + 2*H*Hd*Bl*Wl *t^2 + H*Hd*Bl*Wl^2 + H*Hd*Bl*Br*t^2 + H*Hd*Bl^2*t^2 + 6*H*Hd^2*ee*L*t^2 + 6*H*Hd^2*0d*ud*t^2 + 6*H*Hd^2*0*d*t^2 + 2*H*Hd^2*Wr*0d*ud + 2*H*Hd^2* Wl*ee*L + 2*H*Hd^2*Wl*Q*d + H*Hd^2*Gr*Qd*ud + H*Hd^2*Gl*Q*d + H*Hd^2*Br* Od*ud + H*Hd^2*Bl*ee*L + H*Hd^2*Bl*0*d + H*Hd^3*ud*d*t + H^2*ed^2*Ld^2 + H^2*u*dd*t^3 + H^2*u*dd*L*Ld + 2*H^2*0d*dd*ed*Ld + 2*H^2*0d^2*dd^2 + H^2*0*u*ed*Ld + 2*H^2*0*0d*u*dd + 2*H^2*0^2*u^2 + H^2*Wr*u*dd*t + H^2*Wl *u*dd*t + H^2*Gr*u*dd*t + H^2*Gl*u*dd*t + H^2*Br*u*dd*t + H^2*Bl*u*dd*t + 6*H^2*Hd*ed*Ld*t^2 + 6*H^2*Hd*0d*dd*t^2 + 6*H^2*Hd*0*u*t^2 + 2*H^2*Hd *Wr*ed*Ld + 2*H^2*Hd*Wr*Od*dd + 2*H^2*Hd*Wl*O*u + H^2*Hd*Gr*Od*dd + H^2* Hd*Gl*Q*u + H^2*Hd*Br*ed*Ld + H^2*Hd*Br*Qd*dd + H^2*Hd*Bl*Q*u + 3*H^2* Hd^2*t^4 + 4*H^2*Hd^2*L*Ld*t + H^2*Hd^2*ee*ed*t + H^2*Hd^2*d*dd*t + H^2* $Hd^2*u^*ud^*t + 4^{H}^2*Hd^2*0^{d}t + 2^{H}^2*Hd^2*Wr^*t^2 + 2^{H}^2*Hd^2*Wr^2 + 2^{H}^2*Hd^2*Wr^2 + 2^{H}^2$ 2*H^2*Hd^2*Wl*t^2 + 2*H^2*Hd^2*Wl^2 + H^2*Hd^2*Gr^2 + H^2*Hd^2*Gl^2 + H^2*Hd^2*Br*t^2 + H^2*Hd^2*Br*Wr + H^2*Hd^2*Br^2 + H^2*Hd^2*Bl*t^2 + H^2 *Hd^2*Bl*Wl + H^2*Hd^2*Bl^2 + H^2*Hd^3*ee*L + H^2*Hd^3*0d*ud + H^2*Hd^3* Q*d + H^3*Hd*u*dd*t + H^3*Hd^2*ed*Ld + H^3*Hd^2*Qd*dd + H^3*Hd^2*Q*u + 2 *H^3*Hd^3*t^2 + H^4*Hd^4;

993 of them for $N_f=1$

🗰 Terminal Shell Edit View Window Help

💽 🚳 禁 & 🔠 票 🛞 🔌 📾 ◇ 🦿 奈 🖬 100% 📟 Wed Jul 5 1:06:42 AM Hitoshi Murayama 文 🍖 :三 Terminal — tosh — ttys001

Hitoshi-no-MacBook-Pro.local 49: form hssm8.frm

£

What is Higgs boson really?

Tomohiko Tanabe Adrián Irles

Dark Neutron Dark Matter

Dark Proton & Pion Dark Matter

Yonit Hochberg, Eric Kuflik, HM, arXiv:1512.07917, 1706.05008

Dark Spectroscopy

If the asymmetry originates in the SM side transferred to the dark side

Juan Garcia-Bellido, Hitoshi Murayama, Graham White, arXiv:2104.04778

Better Late Than Never

Even *m*_{SUSY}~10 TeV ameliorates fine-tuning from 10⁻³⁶ to 10⁻⁴

higher energies

• main reason to go linear: extendable!

• 350GeV: $t\overline{t}$ threshold	ILC Nb	35-50MV/m	0.5–1.5TeV
• 100 CoV: on on top	ILC Nb₃Sn	I20MV/m	4TeV
• 400Gev. open top	CLIC	I00MV/m	3TeV
• 550GeV: <i>ttH</i>	PWFA DLA	IGV/m	30TeV

- 1TeV: Higgs self coupling, vector boson scattering
- multi TeV: SUSY, extra dim, Z',

SUSY as a theoretical tool

Can we solve QCD.

- When we first learn about quarks, we get told we can never see them
 - Internet Scam?
 - Confinement!
 - β <0 and asymptotic freedom
 - only suggestive, doesn't prove confinement

Another puzzle: proton and pion a of some quarks

of same quarks

- why pion \approx massless \ll proton?
- chiral symmetry breaking
- not derived from QCD

Dear friend,

I am Andre Ouedraogo, a banker by profession from Burkina Faso in West Africa and currently holding the post of Director Auditing and Accounting unit of the bank. It's my urgent need for a foreign partner that made me to contact you for this business. I have the opportunity of transferring the left over funds (\$11.5 million) of one of my bank clients who died along with his entire family on 31 July 2000 in a plane crash. You can confirm the genuineness of the deceased death by clicking on this website.

http://news.bbc.co.uk/1/hi/world/europe/859479.stm

I need a foreign partner who will support me because i can not claim this money alone without a foreign partner since the deceased client (the owner of the fund) was a foreigner.

This fund (\$11.5 million) will be shared between us in the ratio of 60/40. I agreed that 40% of this money will be for you as a respect to the provision of a foreign account while 60% will be for me and I want to assure you that this transaction is absolutely legal and risk free since i work in this bank and i have all the necessary information that might be needed. Before we proceed, i would like to know your ability to handle this over there in your country.

Please tell me more about the political/economic stability/monetary policy of your country. I need to know all these because i don't want to have problem with the Government of your country.

Kindly update me with the

following information because i want to know you more before we proceed on this transaction. Hope you will understand the importance of this request.

- 1. Your full name.....
- 2. Your age/sex
- 3. your occupation
- 4. Your residential address
- 5. Your nationality
- 6. Your private phone number
- 7. Your fax number

I will be waiting for your response.

Thanks for your understanding.

Have a great day.

Yours.

Andre Ouedraogo

Feeling even better but not there yet

- Confinement (Seiberg-Witten)
 - N=2 SYM has Coulomb branch $u=Tr\Phi^2$
 - singularities = massless monopole/dyon
 - N=1 perturbation $W = \mu u (u \Lambda^2)M^+M^-$
 - $M^+=M^-=\sqrt{\mu \neq 0}$: monopole condensation!
 - can further perturb to N=0 with $m_{\lambda} \neq 0$
- Chiral symmetry breaking
 - N=2 doesn't have $\chi S W = \sqrt{2} \tilde{Q}_i \Phi Q^i$
 - N=1 (Seiberg) has too unusual phases

add anomaly-mediated supersymmetry breaking UV insensitivity allows study of composites

• run-away superpotential for
$$M^{ij} = \tilde{Q}^i Q^j$$

 $W = (N_c - N_f) \left(\frac{\Lambda^{3N_c - N_f}}{\det M}\right)^{1/(N_c - N_f)} \qquad M^{ij} = \delta^{ij} \phi^2$
 $Y = \left|2N_f \frac{1}{\phi} \left(\frac{\Lambda^{3N_c - N_f}}{\phi^{2N_f}}\right)^{1/(N_c - N_f)}\right|^2 - (3N_c - N_f)m \left(\frac{\Lambda^{3N_c - N_f}}{\phi^{2N_f}}\right)^{1/(N_c - N_f)} + c.c.$

 $M_{ij} = \Lambda^2 \left(\frac{4N_f (N_c + N_f)}{3N_c - N_f} \frac{\Lambda}{m} \right)^{(N_c - N_f)/N_c} \delta_{ij}$

SU(N_f)_LXSU(N_f)_R \rightarrow SU(N_f)_V χ SB! Proving Nambu mesino loop \rightarrow WZW term N_f=1 special no NGB, gapped

nigher power poter

" $N_c + 2 \le N_f \le 3N_c/2$ "magnetic" IR-free SU($N_f - N_c$) gauge theory

$$W = \frac{1}{\mu} M^{ij} q_i \tilde{q}_j \to \lambda \tilde{M}^{ij} q_i \tilde{q}_j$$

- look for the global minimum
- go along the meson direction with rank $M=N_f$ $\overline{M^{ij}} = \phi \delta^{ij}$
- integrate out dual quarks with
- pure $SU(N_f N_c) YM$ forms gaugino condensate $\overline{SU(N_f)}_L \times \overline{SU(N_f)}_R \rightarrow \overline{SU(N_f)}_V$

$$W = \left(N_f - N_c\right) \left(\frac{\kappa^{Nf} \det M}{\Lambda^{3N_c - 2N_f}}\right)^{N_f + N_c + 1} + c.c.$$

$$V = N_f \Lambda^4 \left|\frac{\kappa \phi}{\Lambda}\right|^{2N_c / (N_f - N_c)} - (2N_f - 3N_c)m\Lambda^3 \left(\frac{\kappa \phi}{\Lambda}\right)^{N_f / (N_f - N_c)} + c.c.$$

$$\phi = \kappa^{-1} \Lambda \left(\frac{2N_f - 3N_c}{N_c} \frac{m}{\Lambda}\right)^{(N_f - N_c) / (2N_c - N_f)} \sqrt{\ll \Lambda} \sqrt{\sqrt{\kappa}} + c.c.$$

Why SUSY?

- mathematically interesting
- string theory needs it
- rationale for scalars
- helps stabilize inflaton potential
- gauge coupling unification
- dark matter candidate
- hierarchy (naturalness) problem
- fun for colliders
- baryogenesis?
- cosmological constant? |0-120 to |0-60
- as a tool to understand field theory

SUSY 2040

SUSY 2040 Donald Trump Lunar Station