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JET PHYSICS FOR BSM 

• boosted Higgs,  boosted top  for  

• heavy resonance search  

• SMEFT (high PT higgs boson, W, 
and Z distribution will be 
affected. )  

• boosted objects look like a 
jet(narrow). "jet substructure" is 
important to  distinguish it from 
QCD. 

• systematic understanding of quark 
and gluon jets is important to 
estimate backgrounds. 

High mass resonances 25

Resonant HH —> 4b. 
Heavy spin-2 KK gravitons. 
Boosted bb pairs, large R jets.
ATL-PYHS-PUB-2018-028.

Z’ —> ee, μμ.
ATL-PYHS-PUB-2018-044.

ttbar resonances. 
RS gluions. 

Boosted tops, top-tagged jets.
CMS-PAS-FTR-18-009

W’ —> eν, μν.
ATL-PYHS-PUB-2018-028.
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diHiggs and Higgs self coupling 12

HH is a flagship measurement at HL-LHC

• Measure trilinear H self coupling λHHH = mH2/2v  

—> constrain H potential shape, nature of EWSB.

• sensitive to BSM physics

Sensitivity to HH requires HL-LHC: and combining all 
channels.  Only ggH used.  Expect 4σ from ATLAS+CMS

Most sensitive decay channels: bbγγ and bbττ.

Coupling modifier:

ATL-PHYS-PUB-2018-053
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JET SUBSTRUCTURE 
• Jet  : Originally defined from highest PT object in the cluster (80's)  

• KT algorithm  (91) → general seedless  jet algorithms (Cacciari Salam Soyez "fast 
jet" (2006)  ) 

• merging  the pairs with the smallest distance  dij  one by one nd "update" jet constituents  

• Jet substructure for heavy object search  (2008 
Butterworth et al ) going backward the cluster 
sequence.  Systematically finding cores  expected 
in heavy particle decays. 

• mass drop→ soft drop 

A priori it is not clear whether it is better to have regular (‘soft-resilient’) or less regular (soft-
adaptable) jets. In particular, regularity implies a certain rigidity in the jet algorithm’s ability to
adapt a jet to the successive branching nature of QCD radiation. On the other hand knowledge
of the typical shape of jets is often quoted as facilitating experimental calibration of jets, and
soft-resilience can simplify certain theoretical calculations, as well as eliminate some parts of the
momentum-resolution loss caused by underlying-event and pileup contamination.

Examples of jet algorithms with a soft-resilient boundary are the plain “iterative cone” algo-
rithm, as used for example in the CMS collaboration [6], and fixed-cone algorithms such as Pythia’s
[7] CellJet. The CMS iterative cone takes the hardest object (particle, calorimeter tower) in the
event, uses it to seed an iterative process of looking for a stable cone, which is then called a jet.
It then removes all the particles contained in that jet from the event and repeats the procedure
with the hardest available remaining seed, again and again until no seeds remain. The fixed-cone
algorithms are similar, but simply define a jet as the cone around the hardest seed, skipping the
iterative search for a stable cone. Though simple experimentally, both kinds of algorithm have the
crucial drawback that if applied at particle level they are collinear unsafe, since the hardest particle
is easily changed by a quasi-collinear splitting, leading to divergences in higher-order perturbative
calculations.1

In this paper it is not our intention to advocate one or other type of algorithm in the debate
concerning soft-resilient versus soft-adaptable algorithms. Rather, we feel that this debate can be
more fruitfully served by proposing a simple, IRC safe, soft-resilient jet algorithm, one that leads
to jets whose shape is not influenced by soft radiation. To do so, we take a quite non-obvious route,
because instead of making use of the concept of a stable cone, we start by generalising the existing
sequential recombination algorithms, kt [1] and Cambridge/Aachen [2].

As usual, one introduces distances dij between entities (particles, pseudojets) i and j and diB

between entity i and the beam (B). The (inclusive) clustering proceeds by identifying the smallest
of the distances and if it is a dij recombining entities i and j, while if it is diB calling i a jet and
removing it from the list of entities. The distances are recalculated and the procedure repeated
until no entities are left.

The extension relative to the kt and Cambridge/Aachen algorithms lies in our definition of the
distance measures:

dij = min(k2p
ti , k2p

tj )
∆2

ij

R2
, (1a)

diB = k2p
ti , (1b)

where ∆2
ij = (yi − yj)2 + (φi − φj)2 and kti, yi and φi are respectively the transverse momentum,

rapidity and azimuth of particle i. In addition to the usual radius parameter R, we have added a
parameter p to govern the relative power of the energy versus geometrical (∆ij) scales.

For p = 1 one recovers the inclusive kt algorithm. It can be shown in general that for p > 0
the behaviour of the jet algorithm with respect to soft radiation is rather similar to that observed
for the kt algorithm, because what matters is the ordering between particles and for finite ∆ this
is maintained for all positive values of p. The case of p = 0 is special and it corresponds to the
inclusive Cambridge/Aachen algorithm.

1This is discussed in the appendix in detail for the iterative cone, and there we also introduce the terminology
iterative cone with split–merge steps (IC-SM) and iterative cone with progressive removal (IC-PR), so as to distinguish
the two broad classes of iterative cone algorithms.
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Figure 1. Schematic of CA clustering and soft drop grooming algorithm. On the right the branches
that fail to satisfy the soft drop criteria, shown in gray, are discarded.

presented in section 7. Section 8 presents a parton shower Monte Carlo (MC) event genera-

tor study where we confront our field theory based description of the hadronization correc-

tions in the SDOE region with MC results at parton and hadron level. In particular, we test

the agreement of MCs with our predictions for universality by fitting the power corrections

in the SDOE region to results from MC hadronization models. We conclude in section 9.

2 Review of soft drop and partonic factorization

2.1 Soft drop algorithm and jet mass

The soft drop algorithm [48] considers a jet of radius R, reclusters the particles into a

angular ordered cluster tree of subjets using the Cambridge-Aachen (CA) algorithm [66, 67],

and then removes peripheral soft radiation by sequentially comparing subjets i, j in the

tree. The grooming stops when a soft drop condition specified by fixed parameters zcut
and β is satisfied by a pair of subjets. For pp collisions the condition is

min[pT i, pTj ]

(pT i + pTj)
> zcut

(
Rij

R0

)β

, (2.1)

where Rij is the angular distance in the rapidity-φ plane, R2
ij = 2

(
cosh(ηi − ηj)− cos(φi −

φj)
)
or R2

ij =
√

(ηi − ηj)2 + (φi − φj)2 (definitions that are equivalent in the boosted

limit, and the latter being the one implemented in the soft drop algorithm). In general

R0 is a parameter that is part of the definition of the soft drop algorithm which is often

chosen to be the jet radius. In the actual implementation of the soft drop algorithm one,

however, defines Rij in terms of a Euclidean distance in (η,φ) plane, such that R2
ij =√

(ηi − ηj)2 + (φi − φj)2. The two definitions are equivalent in the boosted limit. For

e+e− collisions the condition is

min[Ei, Ej ]

(Ei + Ej)
> zcut

(√
2
sin(θij/2)

sin(Ree
0 /2)

)β

. (2.2)

This is illustrated in figure 1 where Θsd = 1−Θsd represents the pass/fail test being applied

by the soft drop groomer. Once eq. (2.1) or eq. (2.2) is satisfied all subsequent constituents

in the tree are kept, thus setting a new jet radius Rg < R for the groomed jet.
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1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with

numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon jets

[44, 47–51], and mitigate the e↵ects of jet contamination [6, 52–61]. Many of these techniques

have found successful applications in jet studies at the Large Hadron Collider (LHC) [50, 62–

89], and jet substructure is likely to become even more relevant with the anticipated increase

in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [90–95] as well as more so-

phisticated substructure techniques [44, 59, 60, 96–103]. Recently, Refs. [59, 60] considered

the analytic behavior of three of the most commonly used jet tagging/grooming methods—

trimming [53], pruning [54, 55], and mass drop tagging [6]. Focusing on groomed jet mass

distributions, this study showed how their qualitative and quantitative features could be un-

derstood with the help of logarithmic resummation. Armed with this analytic understanding

of jet substructure, the authors of Ref. [59] developed the modified mass drop tagger (mMDT)

which exhibits some surprising features in the resulting groomed jet mass distribution, in-

cluding the absence of Sudakov double logarithms, the absence of non-global logarithms [104],

and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2

> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [59], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).
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SEEDLESS IRC SAFE VARIABLES
• Cluster jet with large size R by anti-KT  and see inside.  

• n-subjettiness (2010 Thaler Tilburg )  (minimize the distance 
to N axes. ) +grooming  

 

• Energy Flow Polynomial(Komiske et al 1712.07124)    

 

• ex    ,  

• linear in   for the particle involved ← IRC safe 

Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

use the N -subjettiness observables. In this section, we also prove that the set of observables

is complete and minimal. In Sec. 3, we discuss our event simulation and machine learning

implementation. We present the results of our study, and compare discrimination power from

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n
R

�
1i, R

�
2i, . . . , R

�
Ni

o
. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity
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EFPG =
M

∑
i1

. . .
M

∑
iN

. . zi1 . . ziN ∏
k,l∈G

θikil

EFPβ
2 = ∑

i, j

zizjθij θij = [(yi − yj)2 + (ϕi − ϕj)]β/2
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BILDING CLASSIFIER

SciPost Physics Submission

a new set of questions related to training data, benchmarking, calibration, systematics, etc.

2 Data set

The top signal and mixed quark-gluon background jets are produced with using Pythia8 [25]
with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions
and pile-up. For a simplified detector simulation we use Delphes [26] with the default ATLAS
detector card. This accounts for the curved trajectory of the charged particles, assuming a
magnetic field of 2 T and a radius of 1.15 m as well as how the tracking e�ciency and momen-
tum smearing changes with ⌘. The fat jet is then defined through the anti-kT algorithm [27]
in FastJet [28] with R = 0.8. We only consider the leading jet in each event and require

pT,j = 550 .... 650 GeV . (1)

For the signal only, we further require a matched parton-level top to be within �R = 0.8,
and all top decay partons to be within �R = 0.8 of the jet axis as well. No matching is
performed for the QCD jets. We also require the jet to have |⌘j | < 2. The constituents are
extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200
constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

Particle information or additional tracking information is not included in this format.
For instance, we do not record charge information or the expected displaced vertex from the
b-decay. Therefore, the quoted performance should not be considered the last word for the
LHC. On the other hand, limiting ourselves to essentially calorimeter information allows us
to compare many di↵erent techniques and tools on an equal footing.

Our public data set consists of 1 million signal and 1 million background jets and can be
obtained from the authors upon request [29]. They are divided into three samples: training
with 600k signal and background jets each, validation with 200k signal and background jets
each, and testing with 200k signal and 200k background jets. For proper comparison, all
algorithms are optimized using the training and validation samples and all results reported
are obtained using the test sample. For each algorithm, the classification result for each jet

Figure 1: Left: typical single jet image in the rapidity vs azimuthal angle plane for the top
signal after pre-processing. Center and right: signal and background images averaged over
10,000 individual images.
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top  10,000 qcd  10,000single event 

jet with pT=500~ 650GeV  from 1902.09914 work flow 

jet →  (High level variable )  →　classifier  cut based, BDT, DL  

( classifier : increase the prob. of signal and reduce the  prob. of 
background)   

zi Φ(zi)
or jet constituent itself 



Deep Learning and classifier Φ(xi)

Introduction Neural Network Crash Course A spectral function of jet substructure Spectral Analysis of Jet Substructure: Higgs Spectral Analysis of Jet Substructure: Sgluon Spectral Analysis of Jet Substructure: A Quick Sketch on Top Jets Spectral Analysis of Jet Substructure: Understanding Neural Networks Conclusion

Neural Network Crash Course: What is an Artificial Neural Network?

The artificial neural network is a biology inspired framework of modelling a
function.

Basic architectural unit: neuron

x1

·
·
·

xn

wi1

·
·
·

win
bi

P
'(·) '(wijxj + bi )

inputs weights bias activation output

reduced notation

Activation: a (bounded) (non-linear) increasing nonconstant function

x

y

x

y

· · ·

Rectified Linear Unit(ReLU) Sigmoid · · ·

'ReLU(x) = x✓(x) 'sigmoid(x) =
1

1 + e�x
· · ·

Build a network architecture
x1

x2

x3

ŷ

This kind of feed-forward network’s output ŷ(x1, · · · , xn) could
approximate an output of a function y(x1, · · · , xn) if proper weights and
biases are assigned.
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output:              

φ: activation function   
source of non linearity 

optimization 
wij,bi
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MACHINE LEARNING LANDSCAPE OF TOP TAGGERS (1902.09914) 
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Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
AUC ensemble median of multiple trainings. More precise numbers as well as uncertainty
bands given by the ensemble analysis are given in Tab. 1.

Instead of extracting these performance measures from single models we can use ensembles.
For this purpose we train nine models for each tagger and define 84 ensemble taggers, each time
combining six of them. They allow us to evaluate the spread of the ensemble taggers and define
mean-of-ensemble and median-of-ensemble results. We find that ensembles leads to a 5 ... 15%
improvement in performance, depending on the algorithm. For the uncertainty estimate of the
background rejection we remove the outliers. In Tab. 1 we see that the background rejection
varies from around 1/600 to better than 1/1000. For the ensemble tagger the ParticleNet,
ResNeXt, TreeNiN, and PFN approaches again lead to the best results. Phrased in terms
of the improvement in the signal-to-background ratio they give factors ✏S/✏B > 300, vastly
exceeding the current top tagging performance in ATLAS and CMS.

Altogether, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups remain
competitive with the technically much more advanced ResNeXt and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
e�cient physics-specific tools. While their performance does not quite match the state-of-
the-art standard networks, it is close enough to test both approaches on key requirements in
particle physics, like treatment of uncertainties, stability with respect to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on
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JET AS IMAGE (CNN) 

•  Transfer image by NxN filter → some cutoff (pooling )  →...  to find 
correlation.  

• Performance: jet Image (Ecal hit )  CNN, ResNet  BDT based on human 
made variables  

• Why a NN is better than the other?  What kind of event  is excluded 
additionally? What is the key feature? 

≫

Introduction Neural Network Crash Course A spectral function of jet substructure Spectral Analysis of Jet Substructure: Higgs Spectral Analysis of Jet Substructure: Sgluon Spectral Analysis of Jet Substructure: A Quick Sketch on Top Jets Spectral Analysis of Jet Substructure: Understanding Neural Networks Conclusion

Practical Example with CNN: Image Recognition Techniques with Jet Image
L. Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman, (1511.05190)32- -

Generic overview slide
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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GRAPH NEURAL NETWORK (GNN) 
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Figure 7. Possible architectures for a GN block that create an updated node
representation. Using an edge representation as an intermediate step (upper diagram)
gives a di↵erent inductive bias to the model, compared to using a global representation
of the set (lower diagram). The function names are from equation 1 and figure 4(a)

GN block functions. The key question here is what logical steps one would take to

form the GN block output in a way that serves the task, and which parts of this logical

process should be modeled with neural networks? The most general GN block (as shown

in figure 4(a)) could have all of its update functions implemented as neural networks,

which allows the most flexibility in the learning processes. This flexibility might not be

required for the task, and it might carry computational costs that we wish to keep to a

minimum. Therefore its probably better to start with a simple architecture, and only

add complexity gradually, until the algorithms performance is satisfactory.

Figure 7 shows two examples of possible configurations, either creating an edge

representation before aggregating edges and forming a node update, or using global

aggregation before a node update. Both configurations result in an updated node

representation, but one of them is based on a sum of pair-wise representations, and the

other on a global sum of node representations — the information content is the same,

but the inductive bias is di↵erent. For example, the authors of [72] assumed that the

jet-tagging e�ciency is heavily a↵ected by the �R between neighboring jets — therefore

an edge update step created a representation of pair-wise interaction between jets, which

was then summed for each jet to create the updated node representation. In contrast

the authors of [53] used a DeepSet architecture, where each node representation is

created independently from its neighbors, the node representations are then summed to

create the graph representation, with each node representation weighted by the particles

energy.

Attention Mechanisms. Another important component that can be used in defining

the ⇢e!v and ⇢v,e!u aggregation functions is using attention mechanisms, as illustrated
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Therefore a decision needs to be made about how to construct a graph from the set of

inputs. Di↵erent graph construction methods are illustrated in figure 6. Depending on

the task, one might even want to avoid creating any pairwise relationships between

nodes. If the objects have no pairwise conditional dependence — a DeepSet [53]

architecture with only node and global properties might be more suitable. Edges in

the graph serve 3 roles:

(i) The edges are communication channels among the nodes.

(ii) Input edge features can indicate a relationship between objects, and can encode

physics motivated variables about that relationship (such as �R between objects).

(iii) Latent edges store relational information computed during message-passing,

allowing the network to encode such variables it sees relevant for the task.

In cases where the input sets are small (Nv ⇠ O(10) ) the typical and easiest

choice is to form a fully connected graph, allowing the network to learn which object

relationships are important. In larger sets, as the number of edges between all nodes

increases as Ne / (Nv)2, the computational load of using a neural network to create

an edge representation or compute attention weights becomes prohibitive. One possible

(a) (b)

(c)

Figure 6. Di↵erent methods for constructing the graph. (a) Connecting every node
to every other node (b) Connecting neighboring nodes in some predefined feature space
(c) Connecting neighboring nodes in a learned feature space.
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WHAT IS THE ROLE OF OTHERS 

• IRC safe object: subjet, energy correlation( C-correlator) , theoretical prediction 

• IRC "sensitive" Objects:  number of tracks, particles, soft emissions. Theoretically 
difficult. MC modeling  is bad  (Pythia vs Herwig , Shepa...  vs real data ） Color 

coherence etc.. Soft particle distribution also has parent information  

• Jet image contains both IRC safe and IRC unsafe obs.  
and DL may  use it without prejudges
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ENERGY FLOW NETWORK (IRC SAFE )
(1810.05165 KOMISKE, METODIEV, THALER ) 

number of particles each with d features, the result from Ref. [63] can be stated as:

Observable Decomposition. An observable O can be approximated arbitrarily well as:

O({p1, . . . , pM}) = F

 
MX

i=1

�(pi)

!
, (1.1)

where � : Rd
! R` is a per-particle mapping and F : R`

! R is a continuous function.

A schematic representation of Eq. (1.1) is shown in Fig. 1. Inherent in the decomposition of

Eq. (1.1) is a latent space of dimension ` that serves to embed the particles such that an overall

latent event representation is obtained when the sum is carried out. One should think of the

d features for each particle as possibly being kinematic information, such as the particle’s pT ,

rapidity y, and azimuthal angle �, or other quantum numbers such as the particle’s charge

or flavor. Sec. 2 contains additional mathematical details regarding this decomposition.

With a suitable modification of Eq. (1.1), we can restrict the decomposition to infrared-

and collinear-safe (IRC-safe) observables:

IRC-Safe Observable Decomposition. An IRC-safe observable O can be approximated

arbitrarily well as:

O({p1, . . . , pM}) = F

 
MX

i=1

zi�(p̂i)

!
, (1.2)

where zi is the energy (or pT ) and p̂i the angular information of particle i.

The energy-weighting factors zi as well as the energy-independent p̂i in Eq. (1.2) ensure that

the event representation in the latent space is IRC-safe.

In this paper, we show that many common observables are naturally encompassed by

simple choices of � and F from Eqs. (1.1) and (1.2). Furthermore, we can parametrize �

and F by neural network layers, capable of learning essentially any function, in order to

explore more complicated observables. In keeping with the naming convention of Ref. [29]

for methods involving IRC-safe observables, we term a network architecture implementing

Eq. (1.2) an Energy Flow Network (EFN). By contrast, we refer to the more general case

of an architecture that implements Eq. (1.1) as a Particle Flow Network (PFN). These two

network architectures can be mathematically summarized as:

EFN: F

 
MX

i=1

zi�(p̂i)

!
, PFN: F

 
MX

i=1

�(pi)

!
. (1.3)

Our framework manifestly respects the variable length and permutation invariance of par-

ticle sets, achieves performance competitive with existing techniques on key collider tasks,

and provides a platform for visualizing the information learned by the model. Beyond this,

we demonstrate how our framework unifies the existing event representations of calorimeter
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angle.2 In practice, we typically focus on dimensionless observables and use the appropriate

normalized weights: zi = Ei/
P

j Ej or zi = pT,i/
P

j pT,j .

Any IRC-safe observable O can be approximated arbitrarily well by the decomposition:

O
�
{pi}

M
i=1

�
= F

 
MX

i=1

zi �(p̂i)

!
, (2.3)

where � : Rd
! R` is a per-particle angular mapping and F : R`

! R is continuous. All

observables of the form in Eq. (2.3) are manifestly IRC safe due to the energy-weighted

linear sum structure, the dependence of � on purely geometric inputs p̂i, and the fact that

continuous functions of IRC-safe observables are IRC safe.3

The fact that the energy-weighted decomposition in Eq. (2.3) su�ces to approximate all

IRC-safe observables is intuitive from the fact that a continuous function of a su�ciently high-

resolution calorimeter image can be used to approximate an IRC-safe observable arbitrarily

well [101–103]. As discussed in Sec. 2.3, an image of the calorimeter deposits is exactly

encompassed by the energy-weighted observable decomposition.

Here, we provide a direct argument to arrive at Eq. (2.3), building o↵ the Deep Sets

Theorem and following similar logic as Ref. [29]. Given the decomposition of an IRC-safe

observable O into F and � via Eq. (2.2), the IRC safety of the observable O corresponds to

the following statements:

IR safety : F

 
MX

i=1

�(zi, p̂i)

!
= F

 
�(0, p̂0) +

MX

i=1

�(zi, p̂i)

!
, (2.4)

C safety : F

 
MX

i=1

�(zi, p̂i)

!
= F

 
�(�z1, p̂1) + �((1 � �)z1, p̂1) +

MX

i=2

�(zi, p̂i)

!
, (2.5)

where Eq. (2.4) holds for all directions p̂0 that a soft particle could be emitted and Eq. (2.5)

holds for all energy fractions � 2 [0, 1] of the collinear splitting. In Eq. (2.5), we have selected

particle 1 to undergo the collinear splitting but the statement holds for any of the particles by

permutation symmetry. The equations here only hold to a specified accuracy of approximation

in the Observable Decomposition, which we leave implicit since it does not alter the structure

of our argument.

We now make the following suggestive redefinition of � to ensure that the latent repre-

sentation of a particle vanishes if the particle has zero energy:

�(z, p̂) ! �(z, p̂) � �(0, p̂). (2.6)

Infrared safety via Eq. (2.4) ensures that the value of the observable is unchanged under this

redefinition, so without loss of generality we may take � to vanish on arbitrarily soft particles.

2
As discussed in Ref. [29], another sensible choice for the angular measure is p̂i = pµ

i /pT,i. Particle mass

information, if present, can be passed to a PFN via flavor information.
3
Ratios of IRC-safe observables are not necessarily IRC safe [99, 100] since division is discontinuous at zero.
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Figure 1: A visualization of the decomposition of an observable via Eq. (1.1). Each particle

in the event is mapped by � to an internal (latent) particle representation, shown here as

three abstract illustrations for a latent space of dimension three. The latent representation is

then summed over all particles to arrive at a latent event representation, which is mapped by

F to the value of the observable. For the IRC-safe case of Eq. (1.2), � takes in the angular

information of the particle and the sum is weighted by the particle energies or transverse

momenta.

where this appears is learning from point clouds, sets of data points in space. For instance, the

output of spatial sensors such as lidar, relevant for self-driving car technologies, is often in the

form of a point cloud. As point clouds share the variable-length and permutation-symmetric

properties with collider events, it is worthwhile to understand and expand upon point cloud

techniques for particle physics applications.

The Deep Sets framework for point clouds, recently developed in Ref. [63], demonstrates

how permutation-invariant functions of variable-length inputs can be parametrized in a fully

general way. In Ref. [63], the method was applied to a wide variety of problems including red-

shift estimation of galaxy clusters, finding terms associated with a set of words, and detecting

anomalous faces in a set of images. The key observation is that summation, which is clearly

symmetric with respect to the order of the arguments, is general enough to encapsulate all

symmetric functions if one is allowed a large enough internal (latent) space.

In the context of a physics observable O that is a symmetric function of an arbitrary
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Figure 4: The particular dense networks used here to parametrize (a) the per-particle

mapping � and (b) the function F , shown for the case of a latent space of dimension ` =

8. For the EFN, the latent observable is Oa =
P

i zi �a(yi, �i). For the PFN family, the

latent observable is Oa =
P

i �a(yi, �i, zi, pidi), with di↵erent levels of particle-ID (PID)

information. The output of F is a softmaxed signal (S) versus background (B) discriminant.

3.2 Network architecture

So far, there has not yet been any machine learning in our e↵ort to apply the decompositions in

Eqs. (1.1) and (1.2) to collider data. The machine learning enters by choosing to approximate

the functions � and F with neural networks.9 Neural networks are a natural choice to use

because su�ciently large neural networks can approximate any well-behaved function.

To parametrize the functions � and F in a su�ciently general way, we use several dense

neural network layers as universal approximators, as shown in Fig. 4. For �, we employ three

dense layers with 100, 100, and ` nodes, respectively, where ` is the latent dimension that

will be varied in powers of 2 up to 256. For F , we use three dense layers, each with 100

nodes. We confirmed that several network architectures with more or fewer layers and nodes

achieved similar performance. Each dense layer uses the ReLU activation function [108] and

He-uniform parameter initialization [109]. A two-unit layer with a softmax activation function

is used as the output layer of the classifier. See App. A for additional details regarding the

implementations of the EFN, PFN, and other networks. The EnergyFlow Python package [91]

contains implementations and examples of EFN and PFN architectures.

9
Ref. [63] describes two types of architectures in the Deep Sets framework, termed invariant and equivariant.

Equivariance corresponds to producing per-particle outputs that respect permutation symmetry. For this

paper, our interest is in the invariant case, but we leave for future work an exploration of the potential particle

physics applications of an equivariant architecture.
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MACHINE LEARNING LANDSCAPE OF TOP TAGGERS (1902.09914) 
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dynamic quantity such as the constituent pT can distort the jet mass [13]. A further rotation
is applied so that the second highest jet constituent is aligned with the negative y-axis, to
remove the rotational symmetry of the second prong about the first prong in the jet. This
is a proper rotation, not a simple rotation in the ⌘-� plane, and thus preserves the jet mass
(but can distort quantities like N -subjettiness [7, 34]).

The TopoDNN tagger presented here has a similar architecture as a tagger with the same
name used by the ATLAS collaboration [35]. The architecture of this TopoDNN tagger was
optimized for a dataset of high pT (450 to 2400 GeV) R = 1.0 trimmed jets. Its hyper-
parameters are the number of constituents considered as inputs, the number of hidden layers,
the number of nodes per layer, and the activation functions for each layer. For the top dataset
of this study we find that 30 constituents saturate the network performance. The ATLAS
tagger uses only 10 jet constituents, but the inputs are topoclusters [36] and not individual
particles. The remaining ATLAS TopoDNN architecture is not altered.

Individual particle-flow candidates in the experiment are also not individual particles, but
there is a closer correspondence. For this reason, the TopoDNN tagger performance presented
here is not directly comparable to the results presented in Ref. [35].

3.2.2 Multi-Body N-Subjettiness

The multi-body phase space tagger is based on the proposal in Ref. [37] to use a basis of
N -subjettiness variables [7] spanning an m-body phase space to teach a dense neural network
to separate background and signal using a minimal set of input variables. A setup for the
specific purpose of top tagging was introduced in Ref. [24]. To generate the input for our
network we first convert the event to HEPMC and use Rivet [38] to evaluate N -subjettiness
variables by using the FastJet [28] contrib plug-in library [7,39]. The input variables spanning
the m-body phase space are then given by:

n
⌧ (0.5)1 , ⌧ (1)1 , ⌧ (2)1 , ⌧ (0.5)2 , ⌧ (1)2 , ⌧ (2)2 , . . . , ⌧ (0.5)m�2, ⌧

(1)
m�2, ⌧

(2)
m�2, ⌧

(1)
m�1, ⌧

(2)
m�1

o
, (2)

Figure 3: Number of constituents (left) and mean of the transverse momentum (right) of the
ranked constituents of a typical top jet. We show calorimeter entries as well as particle flow
constituents after Delphes.
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DO WE UNDERSTANDING JET PARAMETERS?

7. Results and discussion 15
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Figure 6: Particle-level distributions of ungroomed LHA (l1
0.5) in 120 < pT < 150 GeV in the

Z+jet region (left) and central dijet region (right). The light blue and black error bars correspond
to the statistical and total uncertainties of the experimental data, respectively.
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Figure 9: Particle-level distributions of ungroomed multiplicity (l0
0) in 120 < pT < 150 GeV

in the Z+jet region (left) and central dijet region (right). The light blue and black error bars
correspond to the statistical and total uncertainties of the experimental data, respectively.
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Figure 1: Fraction of AK4 gluon jets in the Z+jet region (red triangles), and the central (black
circles) and forward (blue squares) jets in the dijet region.

systematic uncertainties.

5 Jet substructure observables
For the AK4 and AK8 jets of interest we compute and measure a set of jet substructure observ-
ables with discrimination power to separate quark and gluon jets. The generalized angulari-
ties [44] are defined as:

lk
b = Â

i2jet
z

k
i

✓
DRi
R

◆b

, (1)

where zi is the fractional transverse momentum carried by the ith jet constituent, R is the jet
size parameter, and DRi is the displacement of the constituent from the jet axis, defined as
DRi =

p
(Dyi)

2 + (Dfi)
2 where Dyi and Dfi are the separations in rapidity and azimuthal

angle, respectively, between the jet axis and the ith constituent. The parameters k � 0 and
b � 0 control the momentum and angular contributions, respectively. For b > 1, the anti-
kT jet axis is used to calculate DR. For b  1, DR is calculated using the jet axis constructed
by the winner-takes-all (WTA) method [83]. The use of the WTA axis significantly simplifies
theoretical calculations of these observables, while for observables with b > 1 computation is
feasible with both axis definitions. However, using the anti-kT jet axis results in an observable
that is more akin to the jet mass [40]. To calculate the WTA axis, the constituents of the anti-
kT jet are reclustered using the pT-based WTA scheme. The resultant jet has the (y, f) of the
constituent with the largest pT.

The five observables measured in this note are Les Houches angularity (LHA) = l1
0.5 [84],

width = l1
1, thrust = l1

2 [85] , multiplicity = l0
0, and (p

D

T )
2 = l2

0. These are shown in Fig. 3
as points in the (k, b) plane. Of these variables, only LHA, width, and thrust are infrared and
collinear (IRC) safe as a result of having k = 1 [83]. However, multiplicity and (p

D

T )
2 have

been widely used for quark and gluon discrimination [45, 46]. The calculation of multiplic-
ity only includes constituents with pT > 1 GeV, at both detector- and particle-level. Each of
the observables is designed to emphasise a particular feature of the jet. The LHA, width, and

10

Figure 3: The five generalized angularities lk
b used in this analysis, represented in the (k, b)

plane. The Les Houches Angularity is denoted by LHA. Adapted from [44].

thrust observables take into account both the momentum fraction and the angular distribution
of constituents within the jet. Since the weighting of the latter contribution differs across these
variables, comparing them can highlight differences in constituent positions within the jet. We
expect gluon jets to have, on average, larger values of these observables due to the larger num-
ber of constituents that are further from the jet axis. In contrast, (p

D

T )
2 places more value on

those higher-momentum constituents, irrespective of their position in the jet. With gluon jets
typically having more lower-momentum constituents, we therefore expect them to generally
have smaller values of (p

D

T )
2. While the three IRC-safe angularities are particularly sensitive to

the modelling of perturbative emissions in jets, the other two have larger contributions from
non-perturbative effects and are thus subject to larger uncertainties in their predictions and
measurements.

In this note, we measure each substructure observable with various configurations. Each ob-
servable is computed in multiple bins of pT, and for two different jet size parameters, R = 0.4
and 0.8. For each observable, we further calculate a variant where the observables are com-
puted on the jet clustered with the anti-kT algorithm from only those charged constituents of
the original jet (“charged-only”). While observables computed with both charged and neutral
constituents can be described more easily from first-principle calculations, the charged-only
variants can be measured with a better resolution as a result of the high efficiency and preci-
sion of the tracking detector.

Further, we compute a groomed variant of each observable, where the jet is reclustered with
the Cambridge–Aachen (CA) algorithm [86], and then groomed using the modified mass-drop
algorithm [87, 88], known as the soft drop algorithm [48]. This splits the jet into two subjets by
undoing the last step of the CA jet clustering. It regards the jet as the final soft drop jet if the
two subjets satisfy the condition:

min(p
(1)
T , p

(2)
T )

p
(1)
T + p

(2)
T

> zcut

⇣DR12
R

⌘bsd
, (2)

where p
(1)
T and p

(2)
T are the transverse momenta of the two subjets, R is the size parameter of

the jet, DR12 =
p
(Dy12)2 + (Df12)2 is the distance between the two subjets, and zcut and bsd

are tunable parameters of soft drop, set to zcut = 0.1 and bsd = 0 in this study. If the condition
is not met, the declustering procedure is repeated with the subjet that has the larger pT of the
two, and the other subjet is rejected. This grooming procedure removes soft and wide-angle
radiation from the jet, thereby making the jet substructure observables more resilient to effects
from pileup, underlying event, and initial-state radiation. Note that in all cases, the jet pT used
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Figure 1. Schematic of CA clustering and soft drop grooming algorithm. On the right the branches
that fail to satisfy the soft drop criteria, shown in gray, are discarded.

presented in section 7. Section 8 presents a parton shower Monte Carlo (MC) event genera-

tor study where we confront our field theory based description of the hadronization correc-

tions in the SDOE region with MC results at parton and hadron level. In particular, we test

the agreement of MCs with our predictions for universality by fitting the power corrections

in the SDOE region to results from MC hadronization models. We conclude in section 9.

2 Review of soft drop and partonic factorization

2.1 Soft drop algorithm and jet mass

The soft drop algorithm [48] considers a jet of radius R, reclusters the particles into a

angular ordered cluster tree of subjets using the Cambridge-Aachen (CA) algorithm [66, 67],

and then removes peripheral soft radiation by sequentially comparing subjets i, j in the

tree. The grooming stops when a soft drop condition specified by fixed parameters zcut
and β is satisfied by a pair of subjets. For pp collisions the condition is

min[pT i, pTj ]

(pT i + pTj)
> zcut

(
Rij

R0

)β

, (2.1)

where Rij is the angular distance in the rapidity-φ plane, R2
ij = 2

(
cosh(ηi − ηj)− cos(φi −

φj)
)
or R2

ij =
√
(ηi − ηj)2 + (φi − φj)2 (definitions that are equivalent in the boosted

limit, and the latter being the one implemented in the soft drop algorithm). In general

R0 is a parameter that is part of the definition of the soft drop algorithm which is often

chosen to be the jet radius. In the actual implementation of the soft drop algorithm one,

however, defines Rij in terms of a Euclidean distance in (η,φ) plane, such that R2
ij =√

(ηi − ηj)2 + (φi − φj)2. The two definitions are equivalent in the boosted limit. For

e+e− collisions the condition is

min[Ei, Ej ]

(Ei + Ej)
> zcut

(√
2
sin(θij/2)

sin(Ree
0 /2)

)β

. (2.2)

This is illustrated in figure 1 where Θsd = 1−Θsd represents the pass/fail test being applied

by the soft drop groomer. Once eq. (2.1) or eq. (2.2) is satisfied all subsequent constituents

in the tree are kept, thus setting a new jet radius Rg < R for the groomed jet.
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(a) Schematic representation of the LJP.
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Figure 1: (a) Schematic representation of the LJP. The line z✓ . ⇤QCD roughly indicates the transition between
regions where either perturbative (z✓ > ⇤QCD) or nonperturbative (z✓ < ⇤QCD) e�ects are expected to dominate.
“UE/MPI” denotes the region where sources of nearly uniform radiation are relevant. (b) The ratio of the Lund jet
plane as simulated by the H����� 7.1.3 MC generator with either an angle-ordered parton shower or a dipole parton
shower. (c) The ratio of the Lund jet plane as simulated by the S����� 2.2.5 MC generator with either the AHADIC
cluster-based or Lund string-based hadronization algorithm. (d) The ratio of the LJP as simulated by either the
P�����+P����� 8.230 or P����� 8.230 MC generators. The inner set of axes indicate the coordinates of the LJP
itself, while the outer set indicate corresponding values of z and �R.
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Figure 3: Representative horizontal and vertical slices through the LJP. Unfolded data are compared with particle-level
simulation from several MC generators. The uncertainty band includes all sources of systematic and statistical
uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) 0.67 < ln(R/�R) < 1.00, (b)
1.80 < ln(1/z) < 2.08, (c) 3.33 < ln(R/�R) < 3.67, and (d) 5.13 < ln(1/z) < 5.41.
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Jets are collimated sprays of particles resulting from high-energy quark and gluon production. The details
of the process that underlies the fragmentation of quarks and gluons with quantum chromodynamic (QCD)
charge into neutral hadrons is not fully understood. In the soft gluon (‘eikonal’) picture of jet formation, a
quark or gluon radiates a haze of relatively low energy and statistically independent gluons [1, 2]. As QCD
is nearly scale-invariant, this emission pattern is approximately uniform in the two-dimensional space
spanned by ln(1/z) and ln(1/✓), where z is the momentum fraction of the emitted gluon relative to the
primary quark or gluon core and ✓ is the emission opening angle. This space is called the Lund plane [3].
The Lund plane probability density can be extended to higher orders in QCD and is the basis for many
calculations of jet substructure observables [4–7].

The Lund plane is a powerful representation for providing insight into jet substructure; however, the plane
is not observable because it is built from quarks and gluons. A recent proposal [8] describes a method to
construct an observable analog of the Lund plane using jets, which captures the salient features of this
representation. Jets are formed using clustering algorithms that sequentially combine pairs of proto-jets
starting from the initial set of constituents [9]. Following the proposal, a jet’s constituents are reclustered
using the Cambridge/Aachen (C/A) algorithm [10, 11], which imposes an angle-ordered hierarchy on
the clustering history. Then, the C/A history is followed in reverse (‘declustered’), starting from the
hardest proto-jet. The Lund plane can be approximated by using the softer (harder) proto-jet to represent
the emission (core) in the original theoretical depiction. For each proto-jet pair, at each step in the C/A
declustering sequence, an entry is made in the approximate Lund plane (henceforth, the ‘primary Lund jet
plane’ or LJP) using the observables ln (1/z) and ln (R/�R), with

z =
pemission

T
pemission

T + pcore
T

and �R2 = (yemission � ycore)2 + (�emission � �core)2,

where pT is transverse momentum,1 y is rapidity, R is the jet radius parameter, and �R measures the
angular separation. Using this approach, individual jets are represented as a set of points within the LJP.
Ensembles of jets may be studied by measuring the double-di�erential cross section in this space. The
substructure of emissions, which may themselves be composite objects, is not considered in this analysis.
To leading-logarithm (LL) accuracy, the average density of emissions within the LJP is uniform [8]:

1
Njets

d2Nemissions
d ln(1/z)d ln(R/�R) / constant, (1)

where Njets is the number of jets. This construction of the plane is selected to separate momentum and
angular measurements, although other choices such as (ln(R/�R), kt = z�R) are valid.

The Lund plane has played a central role in state-of-the-art QCD calculations of jet substructure [12–17]
which have so far only been studied with the jet mass mjet [18, 19] (which is itself a diagonal line in the LJP:
ln 1/z ⇠ ln m2

jet/p2
T � 2 ln R/�R) and groomed jet radius [20, 21]. The number of emissions within regions

of the LJP is also calculable and provides optimal discrimination between quark and gluon jets [5].

This Letter presents a double-di�erential cross-section measurement of the LJP, corrected for detector
e�ects, using an integrated luminosity of 139 fb�1 of

p
s = 13 TeV proton–proton (pp) collision data

collected by the ATLAS detector. A unique feature of this measurement is that contributions from various

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r , �) are used in the transverse plane, � being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle # as ⌘ = � ln tan(#/2).

2

(z, R) 
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FIG. 5. ROC curves of various classification models for top
jets vs. QCD jets.

TABLE V. AUC of various top jet taggers. The EFN models
have 50 hidden features at the first dense layer. We also show
the training time ttrain and the number of epochs at the end
of the training, Ntrain for mini-batch numbers Nbatch = 20
and 200.

AUC
ttrain/Nepoch

Nbatch = 20 Nbatch = 200

MF 0.9467 793 s / 564 epochs 954 s / 363 epochs

RN 0.9038 288 s / 186 epochs 619 s / 214 epochs

RN+MF 0.9552 418 s / 255 epochs 1057 s / 288 epochs

CNN 0.9529 31020 s / 1483 epochs

CNN+MF 0.9547 12319 s / 530 epochs

EFN 0.8900 535 s / 120 epochs 723 s / 108 epochs

EFN+MF 0.9521 725 s / 149 epochs 813 s / 111 epochs

As can be seen in table V, the model using IRC safe vari-
able with MFs is better than the one without MFs as the
dark jet case. The MFs are enhancing the performance
of the RN much more than the dark jet tagging case.

The CNN+MF shows a similar tagging performance
to the RN+MF, but the baseline CNN does not. As
discussed earlier, the convolutional representation of the
MFs involves a discontinuous step function. However,
the step function is hard to be modeled by convolutional
layers with a finite number of filters and L2 regulariz-
ers. This CNN setup e↵ectively penalizes functions with
discontinuity because it requires large weights or a large

number of filters with small weights.

The correlation coe�cient ⇢ of the logit of outputs
among the training of the same model with di↵erent ran-
dom number seeds is 0.986 for RN+MF. On the other
hand, the ⇢ of CNN is 0.933. The di↵erence shows that
the training of the CNN model su↵ers the local minimum
problem relative to RN+MF. In gradient-based training
methods, easily classifiable samples dominate the early
phase of the training. The di↵erent training may show us
di↵erent local minima that mainly describe the classifica-
tion boundary for the dominant samples. In such cases,
confusing events are underrepresented, and the training
results will have some variance. This variance is larger
for the more generic function model, and the CNNs have
a larger correlation coe�cient than the RN+MFs.

The local minimum problem of the CNN can be re-
laxed by explicitly providing some components, such as
the MFs. Adding the MFs to CNN inputs improves the
situation, and CNN+MF has the correlation coe�cient
0.979. Furthermore, the correlation between CNN+MF
and RN+MF is 0.941, much higher than the correlation
between CNN and RN+MF. Namely, the two models are
now quite correlated to each other.

To visualize the fine di↵erence between the RN+MF
and CNN, we compare the (A(0)

, A
(2)) distribution of

dijet samples, conditioned on the classifier outputs. We
select the dijet samples with classifier outputs ŷCNN and
ŷRN+MF of CNN and RN+MF models less than its value
at the 70% of top jet selection e�ciency, respectively.

By taking the ratio of the histograms of the MFs, we
can visualize the di↵erence in classification boundaries of
RN+MF and CNN. In Fig. 6, we consider the ratio

I =
N(CNN)

N(RN+MF) + ✏
(47)

where N is the density at a given bin of the his-
togram of the samples selected by the CNN or RN+MF,
and ✏ = 0.1 is the regularization to avoid dividing by
zero. Figure 6(a) is distribution of I in (A(0)

, A
(2))

plane, and Fig. 6(a) is the same plot but for the MFs
obtained from the pixels above the 8 GeV threshold,
(A(0)[8 GeV], A(2)[8 GeV]).

Because the RN+MF model rejects more dijet events,
the ratios tend to be bigger than 1 for most of the bins.
In the figure, the red bins represent I > 1, while the blue
bins correspond to I < 1. For Fig. 6(a), the bins with
large A

(0) and small A
(2) is red, indicating the RN+MF

improves the classification by selecting more samples on
this region. For Fig. 6(b), the region with large A

(0) and
large A

(2) tend to have larger values, but the red region
is less prominent. This may indicate that the CNN is
utilizing the geometric features of the pixels with energy
above 8 GeV, but the CNN may also have di�culty in
fully utilizing the geometric information of soft energy
deposits.
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FIG. 7. The AUCs of RN+MF and CNN trained with a
given number of training samples. The x-axis Nevent denotes
the number of samples in each class. The rightmost entries are
the AUCs of the networks trained on the full training dataset.
Since the number of the signal and background samples are
not identical in this case, we put their average value on the
x-axis.

jet classification. The curves for RN+MF and CNN meet
at 4000 events, which is much smaller than the meeting
point of the curves in the top jet tagging case. This is
because there are no dark jet samples at the tail of the
MF distributions of QCD jets, as shown in Fig. 3. The
training of the CNN could easily find this di↵erence with
a small number of samples, and the curves will meet much
earlier.

Since the CNN model has comparable performance to
RN+MF, we may consider optimizing learning steps to
improve the performance when the dataset is small. For
example, we may adjust learning dynamics by replacing
the cross-entropy loss LCE with a focal loss LFL [54],

LFL = �
1

2
E
�
(1 � ŷ)2 log ŷ | y = 1

�

�
1

2
E
�
(ŷ)2 log(1 � ŷ) | y = 0

�
. (48)

The results are shown in dotted lines in Fig. 7. The fo-
cal loss penalizes the contribution from easily-classifiable
examples by extra factors (1 � ŷ)2 and (ŷ)2, and it
helps training when the dataset is sparse. The jet image
dataset is sparse, so that we can see the improvement in
the low statistics. However, there are no improvements to
RN+MF since MF and S2 distributions are mostly dense
and smooth. Note that the training using focal loss does
not converge to the maximum likelihood estimatiion of
the binary classifier, i.e., ŷ 9 p(y = 1|x) in the asymp-
totic limit. Therefore, the performance is generally less
than the one using the cross-entropy loss when enough
data is available.

B. Less Computational Complexity and Training
Time

Another advantage of the RN+MF is its low computa-
tion complexity. Networks with less computational com-

plexity can be evaluated much faster and takes less mem-
ory.

Table III and table V show that the training time of
RN+MF is about ten times shorter than that of CNN.
We also note that RN+MF takes about 300 MB GPU
memory during the training with 200 mini-batches, while
CNN takes about 6000 MB GPU memory in our setup.

We can estimate the computational complexity di↵er-
ence between CNN and RN+MF from the complexities of
network evaluations and the input calculations. Because
input calculations can be cached, the network evalua-
tion complexity is the dominant factor to the complexity
during the training. The evaluation complexity is propor-
tional to the number of multiplications since the networks
mostly consist of tensor multiplications. One of the most
expensive layers of our CNN is a convolution layer with
3 ⇥ 3 filters mapping images with 30 ⇥ 30 pixels and 16
channels to the images of the same size. This layer has
the following number of multiplications,

(3 ⇥ 3) ⇥ (16 ⇥ 16) ⇥ (30 ⇥ 30) = 2, 073, 600. (49)

Our CNN has two convolutional layers with this config-
uration, so that those two layers used about 4, 000, 000
multiplications.

Meanwhile, our RN+MF has only fully connected lay-
ers, and the most expensive one has 200 incoming fea-
tures and 200 outgoing features. This layer has 200 ⇥

200 = 40, 000 multiplications. We use three dense layers
for each of the MLPs of RN+MF, which have four MLPs.
Then the number of multiplications is at most

3 ⇥ 4 ⇥ 40, 000 = 480, 000. (50)

The estimated computational complexity is factor 10 less
than the convolutional layers, and it qualitatively ex-
plains the di↵erence in training time. It also explains the
di↵erence in GPU memory usage since the backpropaga-
tion algorithm has to record the entire operations. More
operation is involved, more GPU memory is needed dur-
ing the training.

On the other hand, the complexity of input calcu-
lations only matters when the network inputs are not
cached. The computational complexity of evaluating the
inputs of RN+MF is as following. The calculation of MFs
has two convolutions with filter sizes (2k + 1) ⇥ (2k + 1)
and 2⇥2 for the dilation and local feature identification,
respectively. Those two convolutions have the number of
multiplications,

(2k +1)⇥ (2k +1)⇥ (30⇥30)+(2⇥2)⇥ (30⇥30), (51)

which is 4,500 for k = 0 and 155,700 for k = 6. Note that
the complexity of dilation, (2k+1)⇥ (2k+1)⇥ (30⇥30),
can be further reduced by using optimized algorithms.
We may consider this number as the upper bound of the
complexity.

The calculation complexity of the two-point correla-
tion S2,ab is a function of the number of jet constituents,
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Figure 18: The ŷ
0 distributions of PY8 and HW7 test samples for the model trained on the

PY8 events. The neural networks used in the plots are (a) RNS2 , (b) RNS2,N(0),N(0)(4 GeV), (c)
RNS2,N(0),N(1) , and (d) CNN.

and the reweighting is then e↵ective for transforming the PY8 samples to HW7 samples. The opposite
is not true because there are QCD jets which are not in HW7 generated samples. The reweighting is
not exact because we have only a small number of events in some phase space region, and we see
some deviation in ŷ distribution, as shown in figure 18(b). If one wishes to describe real data by
assigning an appropriate weight for each simulated events, it is better to use a generator setup that
covers wider phase space so that we can correct the event distribution by using experimental data
afterwords.
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SUMMARY

• LHC →HL-LHC:   access to high energy tail region. boosted object 
is more important.   

• DL allows us to utilize multi-correlation among jet variables. Event 
reconstruction using QCD features (jet, rapidity gap etc)   

• Current success of LHC is based on deeper QCD understanding. 
good interplay between QCD-EventSimulation-Experiment would 
be important for jet physics 

• More and more interesting applications of DL  => see Tilman's 
talk. 
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APPLICATION OF MF IN THE OTHER FIELD

• Astrophysics : star and galaxy distribution, 
simulation study, 

•  non-Gaussinaity of CMB, weak lensing..  

Additivity, Convexity, and Beyond 113

Fig. 1. Porous media (left) can be described by overlapping grains (spheres, discs)
distributed in space. If the density of grains (white) decreases below a threshold, an
infinite cluster of connected pores (black area) is spanning through the whole system.
This cluster of pores enables the transport of fluids, for instance. The knowledge of
the dependence of the so-called percolation threshold on the shape and distribution
of the grains is essential for many applications. Inhomogeneous domains of thermo-
dynamic stable phases of complex fluids may also be described by overlapping grains
[9,35,38,39,43]. Such configurations resemble, for instance, the structure of microemul-
sions (figure in the middle) or an ensemble of hard colloidal particles (black points
in the figure on the right) surrounded by a fluid wetting layer (white). The interac-
tions between these colloids, as well as the free energy of the homogeneous oil phase
in a microemulsion are given by a bulk term (volume energy), a surface term (surface
tension), and curvature terms (bending energies) of the white region covered by the
overlapping shapes. Thus, the spatial structure of the phases, i.e., the morphology of
the white regions determines the configurational energy which determines itself the
spatial structure due to the Boltzmann factor in the partition function of a canonical
ensemble. A main feature of complex fluids is the occurrence of different length scales:
the clusters of the particles, i.e., the connected white regions are much larger than the
‘microscopic’ radius of the discs and the typical nearest neighbor distance within a
cluster.

tions, the scientist faces the problem of reducing the information to a limited
number of relevant quantities. So far powerful methods have been developed
in Fourier space, namely structure functions and more recently wavelet anal-
ysis. But techniques to analyze spatial information directly in real space may
be very useful for physicists in order to get more relevant spatial information
out of their data which may be complement to structure functions measured
by scattering techniques in Fourier space. Such techniques and measures have
been developed in spatial statistics and the interested reader is referred to the
papers by D. Stoyan and W. Nagel in this volume. To this world also belong
the additive Minkowski functionals which may offer robust morphological mea-
sures as powerful tools which is illustrated by three examples: they can be used
as order parameters characterizing pattern transitions in dissipative systems, as
dynamical quantities characterizing spinodal decomposition, or as generalized
molecular distribution functions characterizing the atomic structure of simple
fluids. The additivity of the Minkowski functionals seems to be the relevant

Statistical Physics  
         Occupation V, Surface(S) →    
nature of material  

　Mecke and Stoyan (2000)

6

-0.124                            -0.009                             0.106                              0.221

FIG. 1: Top left panel: example of a simulated 12-square-degree convergence map in the fiducial cosmology, with intrinsic

ellipticity noise from source galaxies and ✓G = 1 arcmin Gaussian smoothing. A source galaxy density of ngal = 15/arcmin
2

at redshift zs = 2 was assumed. Other three panels: the excursion sets above three di↵erent convergence thresholds , i.e. all
pixels with values above (below) the threshold are black (white). The threshold values are  = 0.0 (top right),  = 0.02 (bottom

left), and  = 0.07 (bottom right). The Minkowski Functionals V0, V1, and V2 measure the area, boundary length, and Euler

characteristic (or genus), respectively, of the black regions as a function of threshold.

find excellent agreement out to ` ⇠ 20, 000 for zs = 1 and
out to ` ⇠ 30, 000 for zs = 1, 5 and 2, corresponding to
our resolution limit. Because of this limitation, we will
employ smoothing scales no smaller than 1 arcmin below.
Comparing Figure 4 to Figure 3 in [33], we notice that
the drop-o↵ in power has been pushed out to higher `,

due to the increased resolution of the density planes.
Our results rely mostly on the cosmology-dependence

of the power spectrum (and MFs), rather than its abso-
lute value. We therefore compare the di↵erences of the
power spectra in various cosmologies from the fiducial
case. The results are shown in Figure 5, which shows
that the agreement is excellent for the dependence of the

Kratochvil  1109.6334   Proving Cosmology  
with Weak Lensing Minkowski Functinals

Powerful to quantitatively describe point distribution 

Porous micro emulsion colloid 

　Mecke and Stoyan (2000)
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N . The jet reclustering has N log N complexity [55], and
the two-point correlation calculation has N

2 complexity
in general. In the case of N = 50, which is approximately
the largest number of jet constituents in our sample ac-
cording to Fig. 3, the total complexity is ⇡ 2, 700. The
second N

2 factor can be reduced to N
2
/2 if a and b of

S2,ab are the same.
Those two complexities of evaluating the inputs of

RN+MF, 155,700 and 2,700, are still much smaller than
the complexity of the two convolutions layers. We con-
clude that the RN+MF setup is computationally e�cient
than the CNN.

VII. PARTON SHOWER MODELING AND
MINKOWSKI FUNCTIONALS

So far, we have been discussing jets generated by
PYTHIA8, but the predicted jet substructure has a simu-
lator dependency in general because of di↵erent parton
shower schemes. PYTHIA8 adopts pT -ordered showering
[56, 57] while HERWIG7 adopts angular-ordered shower-
ing. The distributions of MFs with energy thresholds
can capture the geometric di↵erences between those two
shower schemes, and the two simulated distributions may
be di↵erent from each other. We quickly check the dif-
ference in A

(k)[pT ] distributions and discuss the origin of
di↵erence in terms of the shower scheme.

In Fig. 8, we show the following asymmetry ratio D of
the distribution of two selected A

(k)[pT ].

D(i) =
fP (i) � fH(i)

fP (i) + fH(i)
, fA(i) =

NA(i)P
i
NA(i)

for A 2 {P, H}

(52)
where NP (i) and NH(i) are the number of PYTHIA8 and
HERWIG7 events in the i-th bin, and fP (i) and fH(i) are
its fraction with respect to the total number of events,
respectively. Here, the samples are the QCD jets of the
top jet classification, with pT,J 2 [500, 600] GeV and
mJ 2 [150, 200] GeV.

In Fig. 8(a) and Fig. 8(b), we show the asymmetry
ratio of (A(0)

, A
(1)) without pT filters. The darkest red

bins has D = 1, where no HERWIG7 events are observed.
The darkest blue region corresponds to D = �1, and
no PYTHIA8 samples are in there. The dark red pixels
tend to be in large A

(0) region, because PYTHIA8 predicts
higher A

(0). For the same A
(0) value, PYTHIA8 predicts

smaller values of A
(1) than HERWIG7. This means the jet

constituents are more clustered in PYTHIA8. The trend is
common for all k > 1 (See Fig. 8(b) for k = 3.)

The situation is di↵erent for A
(k) with pT filter. As

illustrated in Fig. 8(c) and Fig. 8(d), the A
(k)[8 GeV]

of PYTHIA8 tend to be higher than that of HERWIG7 for
given A

(0)[8 GeV]. This means high pT pixels are more
sparsely distributed in PYTHIA8 generated samples.

Recall that PYTHIA8 adopts a transverse-momentum-
ordered evolution scheme. A high p? radiation in
PYTHIA8 tends to be emitted at a larger angle. For the
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FIG. 8. The asymmetry D of the (A(0), A(k)) distributions
simulated by PYTHIA8 and HERWIG7. Figures (a) and (c) show
the asymmetry of (A(0), A(1)) distributions. Figures (b) and
(d) show the asymmetry of (A(0), A(3)) distributions. No pT
filter is applied to (a) and (b), while pT > 8 GeV filter is
applied for (c) and (d).

case of HERWIG7, the first emission in the evolution is
typically a large angle soft radiation. The asymmetry D

for A
(k)[pT ] distributions is consistent with the expecta-

tion of the shower modeling. HERWIG7 QCD jet emits soft
particles at a large angle while PYTHIA8 QCD jet emits
higher pT objects at a large angle.

For the best classification performance with less sim-
ulator bias in the application stage, the distribution of
inputs, especially the MFs, has to be tuned carefully to
the real experimental data. The calibration of MF dis-
tributions will be helpful to reduce the simulator depen-
dency in the prediction of more general models, such as
the CNN, because the MFs are important features in the
jet classifications, as shown in Sec. V.

VIII. SUMMARY

In this paper, we introduce a neural network covering
the space of “valuations” of jet constituents. The valu-
ations introduced in this paper can be considered as a
generalization of particle multiplicities which is a useful
variable in quark vs. gluon jet tagging, but it is not IRC
safe in general. The space of IRC unsafe variables is less
explored compared to that of IRC safe variables because
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The situation is di↵erent for A
(k) with pT filter. As
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applied for (c) and (d).
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(k)[8 GeV]

of PYTHIA8 tend to be higher than that of HERWIG7 for
given A

(0)[8 GeV]. This means high pT pixels are more
sparsely distributed in PYTHIA8 generated samples.

Recall that PYTHIA8 adopts a transverse-momentum-
ordered evolution scheme. A high p? radiation in
PYTHIA8 tends to be emitted at a larger angle. For the

(a) (b)

(c) (d)

FIG. 8. The asymmetry D of the (A(0), A(k)) distributions
simulated by PYTHIA8 and HERWIG7. Figures (a) and (c) show
the asymmetry of (A(0), A(1)) distributions. Figures (b) and
(d) show the asymmetry of (A(0), A(3)) distributions. No pT
filter is applied to (a) and (b), while pT > 8 GeV filter is
applied for (c) and (d).

case of HERWIG7, the first emission in the evolution is
typically a large angle soft radiation. The asymmetry D

for A
(k)[pT ] distributions is consistent with the expecta-

tion of the shower modeling. HERWIG7 QCD jet emits soft
particles at a large angle while PYTHIA8 QCD jet emits
higher pT objects at a large angle.

For the best classification performance with less sim-
ulator bias in the application stage, the distribution of
inputs, especially the MFs, has to be tuned carefully to
the real experimental data. The calibration of MF dis-
tributions will be helpful to reduce the simulator depen-
dency in the prediction of more general models, such as
the CNN, because the MFs are important features in the
jet classifications, as shown in Sec. V.

VIII. SUMMARY

In this paper, we introduce a neural network covering
the space of “valuations” of jet constituents. The valu-
ations introduced in this paper can be considered as a
generalization of particle multiplicities which is a useful
variable in quark vs. gluon jet tagging, but it is not IRC
safe in general. The space of IRC unsafe variables is less
explored compared to that of IRC safe variables because

: number of herwig sample in a bin  
 number of pythia sample in a bin
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angular scale R.

S2,ab(R) =
X

i2a,j2b

pT,ipT,j�(R � Rij). (24)

By using S2,ab, the nested summation in Eq. 23 can be
replaced to a single integral as follows,

Z
dR S2,ab(R)�ab(R). (25)

This model covers various jet substructure variables.
For example, the two-point energy correlation functions
EFPn

2 [14, 16] can be written in terms of a linear combi-
nation of the S2 as follows,

EFPn

2,ab =

Z 1

0
dR S2,ab(R) R

n
, (26)

Therefore, this network covers all information encoded in
EFPn

2 .
For the practical use of this RN with IRC-safe con-

straints, we discretize the integral in Eq. 25 by binning
the integrand with bin size �R. The discrete version of
S2,ab is then defined as follows.

S
(k)
2,ab =

Z (k+1)�R

k�R

dR S2,ab(R), (27)

where k is the bin index. The integral in Eq. 25 can be

expressed as a inner product between S
(k)
2,ab and a weight

vector �(k)
ab

,

Z
dR S2,ab(R)�(R) =

X

k

S
(k)
2,ab�

(k)
ab

. (28)

For our numerical study, we take bin size �R = 0.1,
which is the hadronic calorimeter resolution. The S2’s
are directly calculated from the HCAL and ECAL out-
puts. If we use an MLP to model the function f of the RN
in Eq. 23, we can embed �(k) to the first fully-connected
layer. The fully-connected layer that maps one inputP

k
S

(k)
2,ab�

(k)
ab

to the latent dimension is equivalent to a

fully connected layer that maps S
(k)
2,ab’s to the latent di-

mension, i.e.,

Wl

X

k

S
(k)
2,ab�

(k)
ab

=
X

k

WlkS
(k)
2,ab, Wlk = Wl�

(k)
ab

. (29)

The RN is modelled by an MLP taking S
(k)
2,ab, and the

first layer can be regarded as a trainable two-point energy
correlation.

B. Energy Flow Network

Energy flow network (EFN) [19] is also a graph neural
network based on the energy correlators, but this network

uses only pointwise features. This network is based on
the deep set architecture [24], i.e.,

f

"
X

i2a

g(pi)

#
. (30)

As discussed before, this pointwise feature g(pi) should
be a linear function of energy when the IRC-safe con-
straint is assumed, and we have the following model of
the EFN.

f

"
X

i2a

pT,i�(Ri)

#
(31)

For the pixelated image analysis, the pT -weighted sum
over the jet constituents is replaced to the energy-
weighted sum over all pixels,

X

i2a

pT,i�(Ri) ⇡

X

i,j

P
(ij)
T

�ij , (32)

where P
ij

T
is the energy deposit of the (i, j)-th pixel, and

�ij is the corresponding angular weights.
When we replace f with an MLP, the angular weights

�ij can be absorbed into the MLP. The product between
the weights W` of the first dense layer and �ij can be
considered as an e↵ective weights W`ij of an MLP taking

P
(ij)
T

as inputs, i.e., the dense layer can be rewritten as
follows.

W`

2

4
X

i,j

P
(ij)
T

�ij

3

5 =
X

i,j

P
(ij)
T

W`ij , W`ij = W`�ij .

(33)
Therefore, an MLP for the pixelated image analysis mod-
els the EFN for the pixelated jet image.

Note that using the standardized inputs results does
not change the conclusion since the standardization is
a linear transformations. Let us consider the following
transformation of the inputs and parameters of the dense
layer transforms,

P
(ij)
T

!
P

(ij)
T

� µ
(ij)

�(ij)
, (34)

W`ij ! �
(ij)

W`ij , (35)

B` !

X

i,j

µ
(ij)

W`ij + B`, (36)

where µ
(ij) and �

(ij) are the mean and standard deviation

of the inputs.4 The first dense layer,
P

i,j
P

(ij)
T

W`ij +B`

is invariant under this transformation, we may safely use
the MLP for the standardized image to model the EFN.

4
For the pixels which do not have energy variations, we assign

�(ij)
= 1.
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B. Energy Flow Network

Energy flow network (EFN) [19] is also a graph neural
network based on the energy correlators, but this network

uses only pointwise features. This network is based on
the deep set architecture [24], i.e.,
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the EFN.
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Therefore, an MLP for the pixelated image analysis mod-
els the EFN for the pixelated jet image.
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a linear transformations. Let us consider the following
transformation of the inputs and parameters of the dense
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