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Introduction

Strongly coupled field theories are generally hard to solve. Very few
techniques are known or, in some lucky cases, we can rely on exact
solutions.

As far as I know, the only exactly solvable quantum field theories
being not a toy model, are free theories.

”Non-perturbative techniques” imply that standard small perturbation
theory, with all the machinery of Feynman diagrams, is never used.

A possible approach can be obtained by a method due to Bender,
Savage and Milton (Phys. Rev. D 62, 085001 (2000).
[arXiv:hep-th/9907045]) that yields the Dyson-Schwinger set of
equations for the correlation functions in form of partial differential
equations.

I will show how this approach permits to solve Yang-Mills theory for
the local case and extends naturally to the non-local case for an
infinite-derivative theory.
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Bender-Milton-Savage technique (1)

Bender-Milton-Savage technique is a method to get the full hierarchy of
Dyson-Schwinger equations for a quantum field theory, retaining their form
as partial differential equations.
Let us consider the partition function

Z [j ] =

∫
[dφ]e i[S[φ]−

∫
d4xjφ].

being

S [φ] =

∫
d4x

1

2
(∂φ)2 − λ

4
φ4

The first step is to average as follows〈
δS

δφ(x)

〉
j

− j(x) = Z−1[j ]

∫
[dφ]

δ

δφ(x)
e iS[φ]−

∫
d4xjφ = 0.

We are just averaging the classical equation of motion!
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Bender-Milton-Savage technique (2)

This will yield the equation

−�G
(j)
1 (x) + λ〈φ3(x)〉 = j(x)

being Z [j ]G
(j)
1 (x) = 〈φ(x)〉. We derive it two times with respect to j(x).

This will yield

Z [j ][G
(j)
1 (x)]3 + 3Z [j ]G

(j)
1 (x)G

(j)
2 (x , x) + Z [j ]G

(j)
3 (x , x , x) = 〈φ3(x)〉

Inserting into the equation for the 1P-function and setting j = 0 we get
finally the pde for the 1P-function

−�G1(x) + λ[G1(x)]3 + 3λG2(0)G1(x) + λG3(0, 0) = 0

Mass gets renormalized and now, we have a mass term!
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Bender-Milton-Savage technique (3)

We can derive again, similarly as we did in the classical case, the equation
for the 1P function with j 6= 0 and, finally, we get the equation for the
2P-function

−�G2(x , y) + 3λ[G1(x)]2G2(x , y)+

3λG3(0, y)G1(x) + 3λG2(0)G2(x , y) + G4(0, 0, y) = δ4(x − y).

This equation is linear, solvable and very similar to the one of the classical
case whose solution is known.

One can go on in this way to any order one likes.

Once all the correlation functions of a quantum field theory are known, the
theory is completely solved and any observable can be obtained by LSZ
theorem.
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Solution of the quantum equations

We are able to solve these equations. Let us firstly observe that, in the
equation for the 1P-function, it is G3(0, 0) = 0. Then, we will get an
equation that is exactly solvable whose solution is

G1(x) =

√
2µ4

δm2 +
√
δm4 + 2λµ4

sn

(
p · x + θ,

√
−δm2 +

√
δm4 + 2λµ4

−δm2 −
√
δm4 + 2λµ4

)
,

provided that

p2 = δm2 +
λµ4

δm2 +
√
δm4 + 2λµ4

= m2(δm2).

Here is
δm2 = 3λG2(0)

This is a gap equation: Interaction yields a mass.
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2P-function and mass spectrum (1)

Using the given G1 function, we can write down G2, provided G3(0, y) = 0
and G4(0, 0, y) to be checked a posteriori.

G2(p) =

√
δm2 + µ2

√
Ng2/2Z0(δm2,Ng2)

2π3

K 3(k2(δm2))
×

∞∑
n=0

(−1)n(2n + 1)2
qn+1/2

1− q2n+1

1

p2 −m2
n(δm2) + iε

,

being

k2(δm2) =
δm2 −

√
δm4 + 2Ng2µ4

δm2 +
√
δm4 + 2Ng2µ4

,

and, for a small mass shift δm,

lim
δm→0

√
δm2 + µ2

√
Ng2/2Z0(δm2,Ng2) =

1

8

and q = exp
(
−πK (1 + k2)/K (k2)

)
.
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2P-function and mass spectrum (2)

The mass spectrum is given by

mn(δm2) = (2n + 1)
π

2K (k2)

√
δm2 +

Ng2µ4

δm2 +
√
δm4 + 2Ng2µ4

.

From the definition of δm, we get the gap equation

δm2 = 3λ

∫
d4p

(2π)4
G2(p)

This theory develops a mass gap due to self-interaction.

Mass spectrum is that of a harmonic oscillator!1

1The career of a young theoretical physicist consists of treating the harmonic
oscillator in ever-increasing levels of abstraction. (S. Coleman)
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Yang-Mills theory

We consider a gauge theory with no interaction with fermions with a
Lagrangian

LYM = −1

4
F a
µνF

aµν

being
F a
µν = ∂µA

a
ν − ∂νAa

µ + gf abcAb
µA

c
ν .

We add a gauge-fixing term

Lgf = − 1

2ξ
(∂ · A)2

with the parameter ξ properly chosen on the given gauge.
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Dyson-Schwinger hierarchy

Also for gauge theories we can apply the Bender-Milton-Savage
technique to obtain the nP-functions. Knowing the correlation
functions of a quantum field theory implies to solve it completely.
(see M. F., Eur. Phys. J. Plus (2017) 132: 38; Erratum-ibid. (2017)
132: 242, arXiv:1509.05292 [math-ph])

Given the Dyson-Schwinger equations, we can apply the mapping
with the scalar field as done for the classical case. (M.F., Mod. Phys.
Lett. A 24, 2425-2432 (2009), arXiv:0903.2357 [math-ph] & Terence
Tao on https://kvm16.pims.math.ca/DispersiveWiki/index.

php?title=Talk:Yang-Mills_equations and private comm.)

We obtain the spectrum and its corrections arising from
renormalization of the mass.

The spectrum so obtained agrees stunningly well with lattice
computations both in 3 and 4 dimensions (see M.F., Nuclear and
Particle Physics Proceedings 294-296 (2018) 124-128,
arXiv:1708.06184 [hep-ph]).

https://kvm16.pims.math.ca/DispersiveWiki/index.php?title=Talk:Yang-Mills_equations
https://kvm16.pims.math.ca/DispersiveWiki/index.php?title=Talk:Yang-Mills_equations
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Dyson-Schwinger equations for 1P- and 2P-functions (1)

The DS equations can be solved exactly. This can be obtained by the
mapping with the scalar field

Aa
µ(x) = ηaµφ(x)

with the η-symbols having the properties for SU(N) as

ηaµη
aµ = N2 − 1, ηaµη

bµ = δab, ηaµη
a
ν =

1

2
(gµν − δµν) .

We also remember that, in Landau-Lorenz gauge, is

G ab
µν(x , y) = δab

(
ηµν −

∂µ∂ν
∂2

)
∆(x , y),
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Dyson-Schwinger equations for 1P- and 2P-functions (2)

Application of the given methodology will yield the following equations:

1P-function:

∂2φ(x) + 2Ng2∆(0)φ(x) + Ng2φ3(x) = 0.

2P-function:

∂2∆(x − y) + 2Ng2∆(0)∆(x − y) + 3Ng2φ2(x)∆(x − y) = δ4(x − y).

Gap equation:

δm2 = 2Ng2∆(0) = 2Ng2

∫
d4p

(2π)4
∆(p).

The 2 factor in the equations, due to re-normalization, arises by the
algebraic properties of the gauge group!
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String-inspired non-local field theories

We consider the following non-local scalar field theory

L = −φ(x)ef (�)�φ(x)− λ
4φ

4(x) + j(x)φ(x),

and gauge theory

L = −1
4 tr F aµνef (D

2)F a
µν + c̄aDab

µ ∂
µcb + η̄aca + c̄aηa + jaµA

aµ.

The exponential factor represents an entire function adding no-poles and
so, no ghosts and unitarity preserved.

The non-locality introduces a mass-scale factor M that grants an UV-finite
theory.

In the limit of the mass-scale factor running to infinity, the local theory is
properly recovered.
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1P-function for non-local infinite-derivative scalar theory

Bender-Milton-Savage extends naturally to the non-local case (M.F. & A.
Ghoshal, Class.Quant.Grav. 38 (2021) 17, 175013, arXiv: 2011.10586
[hep-th]). In this case, Dyson-Schwinger equations cannot be solved
exactly but just around the local solution (small non-local effects). So, one
has for the 1P-function

φNL(x) = φ(x) +

∫
d4yG2(x − y)δφ(y) + . . .

where

δφ(x) = −µ3
(

2λ

9

) 1
4 4π3

3K 3(i)

[ ∞∑
n=1

Cn(x)

]
+

µ3
(

2λ

9

) 1
4

[
1− 4π3

3K 3(i)

e−
3π
2

(1 + e−π)3
e
3f
(
− π2

4K2(i)
p2
)]

sin3

(
π

2K (i)
(p · x + θ)

)
.

Cn(x) are some coefficients obtained through product of series of known
terms.
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2P-function for non-local infinite-derivative scalar theory

2P-function can be written in the form

G2(k) = G
(c)
2 (k)

1

1 + δm2
0e

f (−k2)G
(c)
2 (k)

,

where the shift δm2
0 can then be computed by the gap equation

δm2
0 = 3λ

∫
d4k

(2π)4
G2(k).

and

G
(c)
2 (k) =

ef (−k
2)

k2 + m2
0e

2f (−k2)

1

1− Π(k)
.

Mass gap gets diluted by non-locality and higher order excitations are
moved far away in the spectrum making them possibly not observable.
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1P- and 2P-function for non-local gauge theory

We apply again the mapping theorem between scalar field theory and
gauge theory, taking into account that λ→ Ng2, therefore (M.F. & A.
Ghoshal, JHEP 21 (2020) 226, arXiv: 2102.10665 [hep-th])

G a
1µ(x) = ηaµφNL(x)

where we introduced the η-symbols. Similarly, in the Landau gauge,

G ab
2µν(k) = δab

(
ηµν −

kµkν
k2

)
G2(k)

provided the gap equation

δm2
0 = 2Ng2

∫
d4k

(2π)4
G2(k).

Again, we have a diluted mass gap and higher excited states moved far
away in the spectrum.
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Confinement

The beta function for the local theory is obtained with the technique
devised in (M.F. & M. Chaichian, Phys. Lett. B 781, 33-39 (2018),
arXiv:1801.09873 [hep-th]) based on BRST and Kugo-Ojima
confinement criterion.

This technique extends immediately to the non-local case yielding
again a proof of confinement (M.F., A. Ghoshal, N. Okada,
arXiv:2106.07629 [hep-th]).

We aim to apply this technique to quantum gravity to confine the
ghost states like in R2 theories, impeding them to propagate.

Also, this would have implications for the behavior of cosmological
and black hole singularities.
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Final considerations

We have provided some examples of exactly solvable interacting
quantum field theory.

This was possible using a set of exact solutions of the classical
equations of motions.

For the gauge theories, we mapped the gauge fields on the scalar
field, this does not select an unique solution but the spectrum of the
theory appears in close agreement with lattice computations.

Confinement can be proven both in the local and non-local case.
Presence of quarks makes the theory unsolvable or solvable just
through some perturbation techniques.

Non-local theories get the mass gap diluted at higher energies and,
possibly, higher excited states seem to be far detached from the
ground state.
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Spectrum of the theory (1)

For the ground state 0++ of the theory in 3+1 dimensions, as seen on
lattice computations, one has

N Lattice Theoretical β Error

2 3.78(7) 3.550927197 2.4265 6%

3 3.55(7) 3.555252334 6.0625 0.1%

4 3.56(11) 3.556337890 11.085 0.1%

6 3.25(9) 3.557102106 25.452 8.6%

8 3.55(12) 3.557471208 45.70 0.2%

Table: Comparison for the ground state at varying N. The lattice data are
obtained from B. Lucini, M. Teper and U. Wenger, JHEP 0406, 012 (2004)
[hep-lat/0404008] for the continuum limit.
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Spectrum of the theory (2)

A similar situation happens for what is labeled as a 2++ resonance in
Lucini&al. paper.

N Lattice Theoretical β Error

2 5.45(11) 4.734569596 2.4265 13%

3 4.78(9) 4.740336446 6.0625 0.8%

4 4.85(16) 4.741783854 11.085 2%

6 4.73(15) 4.742802808 25.452 0.3%

8 4.73(22) 4.743294944 45.70 0.3%

Table: Comparison for the 2++ state at varying N. The lattice data are obtained
from Lucini&al., ibidem, for the continuum limit.
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Equations of motion (1)

Equations of motions for the gauge field will be given by

∂µ∂µA
a
ν − ξ−1∂ν(∂µAa

µ)

+gf abcAbµ(∂µA
c
ν − ∂νAc

µ) + gf abc∂µ(Ab
µA

c
ν)

+g2f abc f cdeAbµAd
µA

e
ν = jaν .

Let us fix the gauge to the Landau-Lorenz gauge that yields

∂µAa
µ = 0.

Our equations simplify to

∂µ∂µA
a
ν + gf abcAbµ(∂µA

c
ν − ∂νAc

µ)

+gf abc∂µ(Ab
µA

c
ν) + g2f abc f cdeAbµAd

µA
e
ν = jaν .
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Equations of motion (2)

By functional deriving with respect to jhλ(y) one has

∂µ∂µG
ah
νλ(x , y) + gf abcGbhµ

ν (x , y)(∂µA
c
ν(x)− ∂νAc

µ(x))

+gf abcAbµ(x)(∂µG
ch
νλ(x , y)− ∂νG ch

µλ(x , y))

+gf abc∂µ(Gbh
µλ(x , y)Ac

ν)(x)

+gf abc∂µ(Ab
µ(x)G ch

nuλ(x , y))

+g2f abc f cdeGbhµ
λ (x , y)Ad

µ(x)Ae
ν(x)

+g2f abc f cdeAbµ(x)Gdh
µλ(x , y)Ae

ν(x)

+g2f abc f cdeAbµ(x)Ad
µ(x)G eh

νλ(x , y) = ηνλδahδ
4(x − y).

This is the equation for the Green function of the classical Yang-Mills field
and it is linear.



Supplementary material 23 / 24

Solving the classical equations (1)

Mapping with the scalar field reduces the equations of the gauge field to

∂µ∂µη
a
νφ(x) + gf abcηbµφ(x)(∂µη

c
νφ(x)− ∂νηcµφ(x))

+gf abc∂µ(ηbµη
c
νφ

2(x)) + g2f abc f cdeηbµηdµη
e
νφ

3(x) = jaν .

Anti-symmetry of f abc removes the second and the third term giving

∂µ∂µφ(x) + Ng2φ3(x) = (N2 − 1)−1η · j

This is the scalar field we discussed initially and we know how to treat it!
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Solving the classical equations (2)

For the Green function we get

∂µ∂µ∆(x , y) + 3Ng2φ2(x)∆(x , y) = δ4(x − y)

Again, we have recovered the scalar field equation for the Green function!

Classically, we get massive solutions to the Yang-Mills equations when
the mapping with a scalar field is supported.

We get also a spectrum that holds, modified by re-normalization
effects, for the quantum case.

Via the mapping, classical Yang-Mills theory in the Landau-Lorenz
gauge is completely solvable by a functional Taylor series.
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