Pre-SUSY 2021: The Summer School on Supersymmetry & Unification of Fundamental Interactions

Introduction to GUT

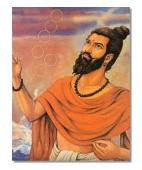
Ilía Gogoladze

University of Delaware Newark, USA

August 19, 2021

Concept of Composition of Matter

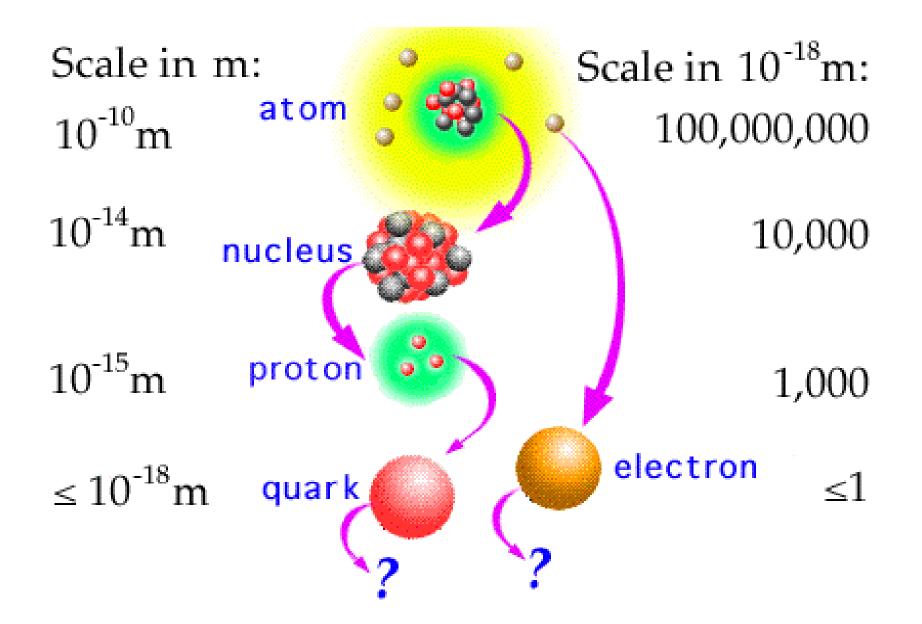
The concept that matter is composed of **discrete units** & cannot be **divided** into arbitrarily tiny quantities has been around for **millennia**

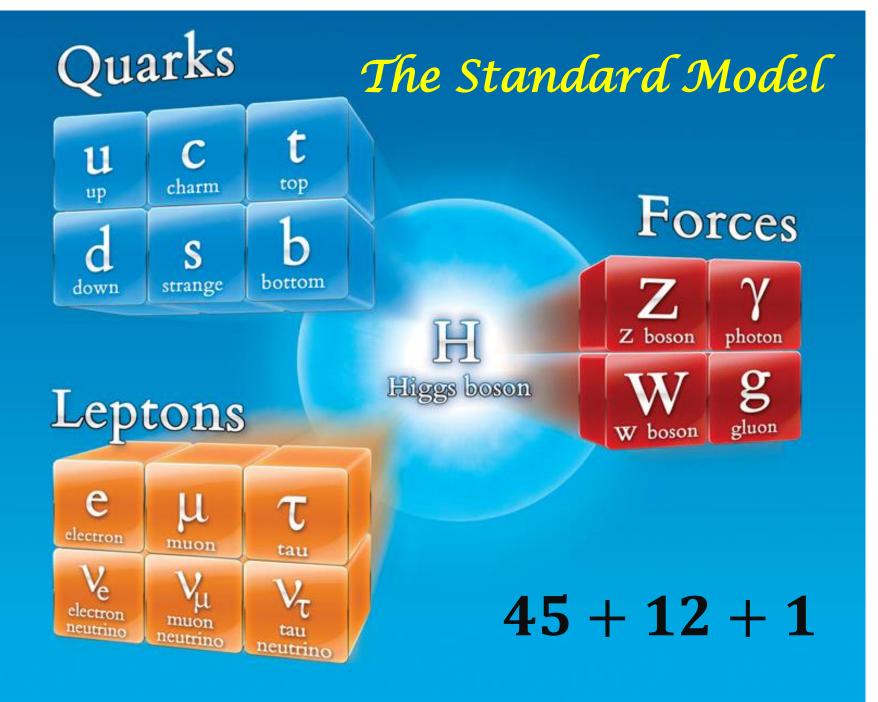


Kanada, ~500 BC, India

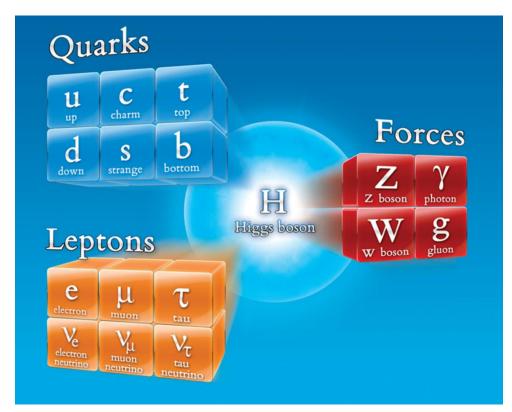
In ancient China, it was believed that all matter was composed of the 5 elements: Water, Wood, Metal, Fire, & Earth.

Unification of Matter

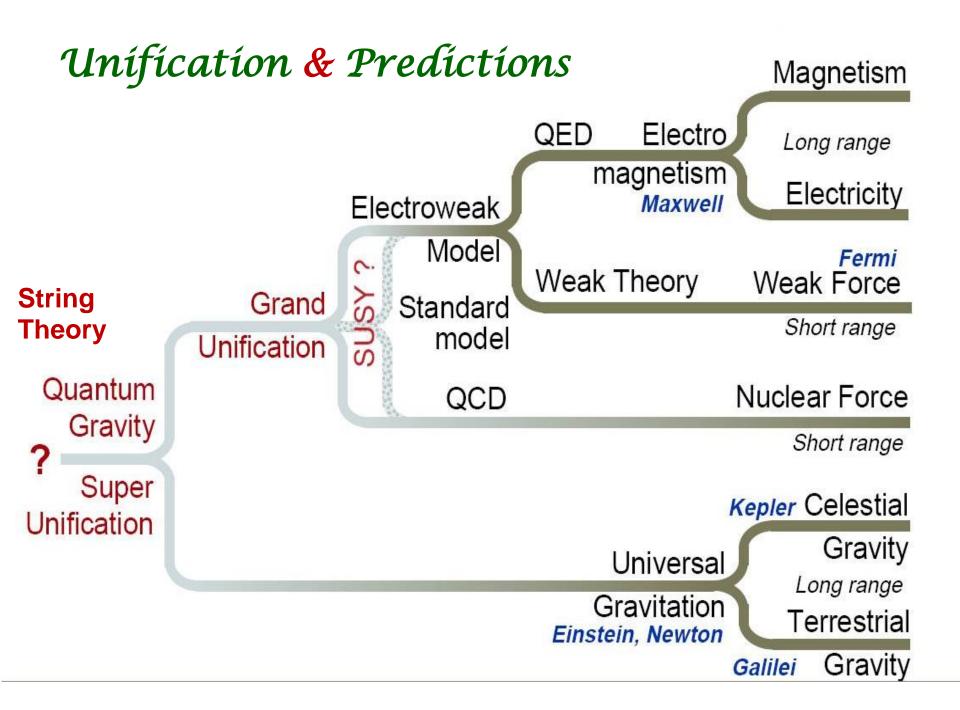




Welcome to the Particle ZOO



4 *vs* 58



The SM

The Standard Model (SM) is the theory governing fundamental particles & interaction (except Gravity) For $L \geq 10^{-18} m$ \Leftrightarrow $E \leq 10^3 GeV$ **SM** is the Theory of Forces & the Particles Forces **Strong** × Weak × Hypercharge $SU(3)_{c} \times SU(2)_{L} \times U(1)_{V}$ 8 gluons $\times A^{\pm}, A^{3} \times B \rightarrow$ Spin 1 bosons $\alpha_3 \approx \frac{1}{8.6} \times \alpha_2 \approx \frac{1}{29.6} \times \alpha_1 \approx \frac{1}{98.3}$ Measured at stale of $\approx 90 \ GeV$

"Chiral Fermions"

- Fermions: Dirac bispinor ψ
- Chiral: definition of handedness:

$$\psi_L = \frac{1}{2} (1 - \gamma_5) \psi \rightarrow Left$$

 $\psi_R = \frac{1}{2} (1 + \gamma_5) \psi \rightarrow Right$

each has only two components

Particle content of the SM consists of three generations of chiral fermions

The SM Particles are "Chiral Fermions"

Left: Electroweak (EW) Doublets

 $\binom{u}{d}, \binom{c}{s}, \binom{t}{d} \rightarrow Quarks: each comes in 3 colors (R,G,B)$

 $\binom{\nu_e}{e}, \binom{\nu_\mu}{\mu}, \binom{\nu_\tau}{\tau} \to Leptons: No \ colors$

Right: all components are EW singlets

 $\begin{array}{l} (u), (c), (t) \\ (d), (s), (b) \end{array} \rightarrow Quarks: each comes in 3 colors (R,G,B) \end{array}$

 $(e), (\mu), (\tau) \rightarrow Leptons: No colors$

Particles are "Chiral Fermions"

Let's adapt a common notation to describe transformation properties of the particles under the SM gauge symmetry

$$SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$$

$$Q_{L} = \begin{pmatrix} u \\ d \end{pmatrix}_{L} : (3, 2)_{\frac{1}{3}}; \quad d_{R} : (3, 1)_{-\frac{2}{3}}; \quad U_{R} : (3, 1)_{\frac{4}{3}};$$

$$L_{L} = \begin{pmatrix} v_{e} \\ e \end{pmatrix}_{L} : (1, 2)_{-1} \quad e_{R} : (1, 1)_{-2}$$

$$v_{R} : (1, 1)_{0} \rightarrow \text{if it exist}$$

Note: d_R is **3 under** $SU(3)_c$, *not* **3**: different handedness of the same down quark!

Charge Conjugate

Recall "charge conjugate" operation (particle \leftrightarrow antipartocle) $\psi^c \equiv i \gamma^2 \psi^*$ Since $\gamma_5^* = \gamma_5$

$$(\psi_R)^c = i\gamma^2 \left(\frac{1}{2} (1+\gamma_5)\psi\right)^* = \frac{i}{2}\gamma^2 (1+\gamma_5)\psi^* =$$

since $\{\gamma^{\mu}, \gamma^5\} = 0$
 $= \frac{1}{2}(1-\gamma_5)[i\gamma^2\psi^*] = (\psi^c)_L$

The conjugate of a right-handed component of a fermion is the left-handed component of the conjugate fermion!

 $\psi^c \equiv i \gamma^2 \psi^*$

Left Handed Base

It is more convenient to work in left (or right) handed bases. We can just drop all "*L*" subscripts & write all field in terms of left-handed components

 $Q : (3, 2)_{\frac{1}{3}}; \qquad d^{c}: (\overline{3}, 1)_{\frac{2}{3}}; \qquad U^{c}: (\overline{\overline{3}}, 1)_{-\frac{4}{3}};$ $L: (1, 2)_{-1} \qquad e^{c}: (1, 1)_{2}$ $\nu^{c}: (1, 1)_{0} \rightarrow \text{if it exist}$

First generation only, others just repeat

The SM Higgs Sector

$$SU(3)_c \times SU(2)_L \times U(1)_Y$$

 $U(1)_{EM}$ <\$\varphi\$> Higgs VEV
 φ- Higgs field is $SU(2)_L$ doublet, complex scalar field
 $\varphi = \left(\begin{array}{c} \varphi^+ \\ \varphi^0 \end{array} \right)_{Y=1}$ Four degree of freedom
 $V(\varphi) = -\mu^2 \varphi^+ \varphi + \lambda (\varphi^+ \varphi)^2$
Minimum at $v = \sqrt{\frac{\mu^2}{\lambda}} \approx 246 \ GeV \Rightarrow < \varphi > = \left(\begin{array}{c} 0 \\ v/\sqrt{2} \end{array} \right)$$

$$\begin{pmatrix} \varphi & \stackrel{+}{\leftarrow} & Q_{EM} = +1 \\ \varphi^0 & \downarrow & Q_{EM} = 0 \\ Q_{EM} = T_3 + Y \end{pmatrix}$$

Ø •

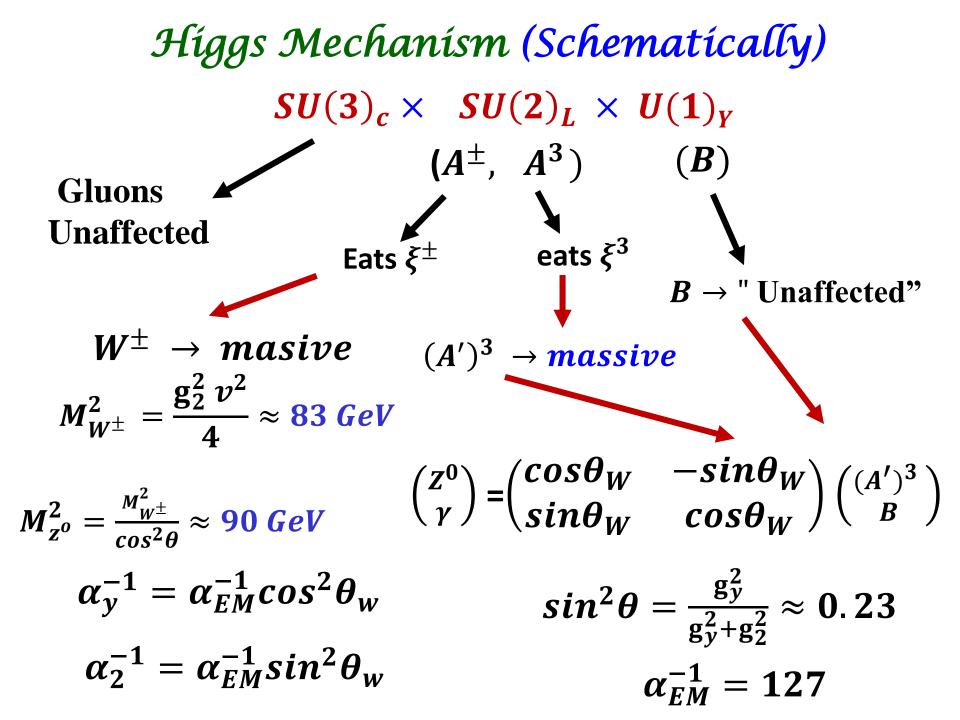
The component which gets VEV must be **Electrically neutral** ($Q_{EM} = 0$). So that EM is the remaining unbroken symmetry

The SM Higgs Sector

Parametrize Higgs in terms of direction relative to new vacuum. Using the polar variables for the scalar fields

$$\varphi = U^{-1}(\zeta) \begin{pmatrix} 0\\ (\nu + \eta(x))/\sqrt{2} \end{pmatrix}$$
$$U(\zeta) = exp[i\vec{\zeta}(x) \cdot \vec{\tau}/\nu]$$

Higgs degrees of freedom are now $\vec{\zeta}(x): (\xi^{\pm}, \xi^3)$ would be Goldstone boson $\eta(x):$ the physical Higgs $\xi^i:$ massles



Yukawa Sector

$$\mathcal{L} = Y_d \overline{Q}_L \varphi \, d_R + Y_u \, \overline{Q}_L (i \, \tau_2 \varphi^*) u_R + Y_e L_L \varphi \, e_R + h. c.$$

The fermions gain **Dirac** masses

$$m_i = Y_i < \varphi > = \frac{Y_i v}{\sqrt{2}}$$
 $v \approx 264 \ GeV$

 $\nu^{c}: (1, 1)_{0} \rightarrow \text{if it exist, then } \rightarrow Y_{\nu} L(i \tau_{2} \varphi^{*}) \nu^{c}$

We have three generation quarks & leptons.

We have mixing between generation.

The SM Summary

	$SU(3)_c \times SU(2)_L \times U(1)_Y$			
Gauge bosons Spin: 1	Gluons: $(8, 1)_0$; A^{\pm}, A^3 : $(1, 3)_0$; B : $(1, 1)_0$			
Matter (Left handed base) Spin: 1/2	$Q_{L} = \begin{pmatrix} u \\ d \end{pmatrix}_{L} : (3, 2)_{\frac{1}{3}}; d^{c}: (\overline{3}, 1)_{\frac{2}{3}}; U^{c}: (\overline{3}, 1)_{-\frac{4}{3}}$ $L_{L} = \begin{pmatrix} \nu_{e} \\ e \end{pmatrix}_{L} : (1, 2)_{-1}; e^{c}: (1, 1)_{2}; \nu_{e}^{c}; (1, 1)_{0}$			
The SM Higgs Spin: 0	<i>φ</i> : (1, 2) ₁			

$$Q_{EM}=T_3+\frac{Y}{2}$$

What sets Values of Y?

Note: $U(1)_Y$ is abelian group, so any normalization is allowed.

From fermions content:

$$Q_{EM}=T_3+\frac{Y}{2}$$

We have measured Q_{EM} experimentally. So, relative hypercharge assignment are fixed by experimental observations!

But is there a theoretical reason for these relative values of *Y*?

Chíral Adler-Bell-Jackíw (ABJ) Anomaly

The chiral *ABJ* anomaly spoils the renormalizability of a gauge theory

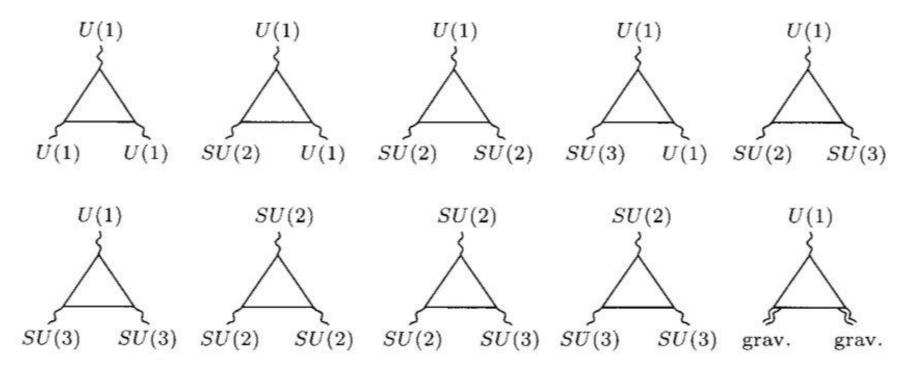


Figure 20.2. Possible gauge anomalies of weak interaction theory. All of these anomalies must vanish for the Glashow-Weinberg-Salam theory to be consistent.

From Peskin & Schroeder

Míraculous Cancellatíon of Anomalíes

- $SU(3)_C^2 \times U(1)_Y$: $\frac{1}{2} \left[2 \times (\frac{1}{6}) + 1 \times (\frac{-2}{3}) + 1 \times (\frac{1}{3}) \right] = 0$
- $SU(2)_L^2 \times U(1)_Y$: $\frac{1}{2} \left[3 \times (\frac{1}{6}) + 1 \times (\frac{-1}{2}) \right] = 0$
- $(\text{gravity})^2 \times U(1)_Y$: $\left[3 \times 2 \times (\frac{1}{6}) + 3 \times (\frac{-2}{3}) + 3 \times (\frac{1}{3}) + 2 \times (\frac{-1}{2}) + 1 \times 1\right] = 0$
- $U(1)_Y^3$:
- $\left[3 \times 2 \times (\frac{1}{6})^3 + 3 \times (\frac{-2}{3})^3 + 3 \times (\frac{1}{3})^3 + 2 \times (\frac{-1}{2})^3 + 1 \times (1)^3\right] = 0$
 - **Relative** *Y*-values are fixed \rightarrow charge quantization

But overall normalization still is not fixed

The SM: Things to Remember

- 1) Lots of clearly disconnected representations for gauge boson & particle content
- 2) **3** independent gauge couplings: (g_1, g_2, g_Y)
- 3) Yukawa sector is unconstrained.
- 4) Particle representations are chiral

$$Q_L = \left(3, 2, \frac{1}{6}\right), \quad but \quad NO \quad \left(\overline{3}, 2, -\frac{1}{6}\right)$$

5) Overall normalization for hypercharge unfixed, $(since U(1)_Y Abelian)$, Even thought relative *Y*-values are fixed

The SM: Things to Remember

6) Higgs mechanism breaks

 $SU(2)_L \times U(1)_Y \longrightarrow U(1)_{EM}$

In general, the subgroup which survives is the subgroup with respect the field getting the non zero VEV is neutral 7) In the SM: Baryon # (B) conserved Lepton # (L) conserved Thus, the lightest baryon proton is stable!

Note: B – is actually broken by instanton effects (very small) L – can be broken by RH neutrino Majorana mass, mv^cv^c

Elements of Group Theory

- A group **G** is a set of elements (**A**, **B**, **C**, ..) with the following properties
- *Closure*: if **A** and **B** are in **G**, **C** = **AB** is also in **G**;
- Association: A (B C) = (A B) C
- *Identity*: There exists an element E such that
 EA = AE = A for every A in G
- *Inverse:* For every A in G, there exists an element A^{-1} such that: $A A^{-1} = A^{-1} A = E$
- If multiplication is commutative A B = B A for all A & B in G, G is *Abelian* group

Elements of Group Theory

- Unitary group U(N), is the set of $N \times N$ unitary matrices: $U U^{\dagger} = U^{\dagger}U = 1$
- It is Non *Abelian* for N > 1.
- The group of $N \times N$ unitary matrices with a unit determinant is called the *special unitary group* SU(N). Unitary matrix can be written in terms of a hermitian matrix $(H^{\dagger} = H)$: $U = e^{iH}$ $det(e^A) = e^{trA}$ & $det(U) = 1 \longrightarrow tr(H) = 0$ Since there are $(n^2 - 1)$ traceless hermitian $N \times N$ matrices, an element of SU(N) is $U = \exp\{\sum_{\alpha=1}^{n^2-1} \theta_{\alpha} \lambda_{\alpha}\}$ θ_{a} is (real) group parameter. λ_{a} is group generator. Rank of SU(N) group is (N - 1)

Toward Unification $SU(3)_c \times SU(2)_L \times U(1)_Y$ The rank, (N – 1), of The SM gauge symmetry is

$$2 + 1 + 1 = 4$$

The SM gauge symmetry can be subgroup of bigger group. No restriction from group theory point of view.

What are the physics constraints?

What Groups G can we Choose?

$\frac{SU(3)_c \times SU(2)_L \times U(1)_Y}{\text{SM gauge symmetry}}$ rank is: 2 + 1 + 1 = 4	group G must be rank ≥ 4 & contain SM as subgroup
SM has chiral (complex) reps. $(\overline{3}, 1, 2/3)$ but not (3, 1, -2/3)	Group G must also have chiral reps
SM is free of chiral anomaly	Group G must have reps for which chiral anomalies are canceled
If we wont to relate the gauge couplings to each other	G should be a simple group

Classification of Lie Groups							
Rank =1	U(1), SU(2)	SO(3)	Sp(2)				
Rank=2	SU(3)	SO(5)	Sp(4)	SO(4)	G ₂		
Rank=3	SU(4)	SO(7)	Sp(6)	SO(6)			
Rank=4	SU(5)	SO(9)	Sp(8)	SO(8)	F4		
Rank=5	SU(6)	SO(11)	Sp(10)	SO(10)			
Rank=6	SU(7)	SO(13)	Sp(12)	SO(12)	E ₆		
•••••	••••	••••	••••	•••••	••••••		

Blue color indicates that group has complex representation

Does **SU(5)** symmetry have the **Potential** for a Successful Unification ?

SU(5) symmetry has the following representations: 1, 5, 10, 15, 24, 45, 50, 78 etc.

Recall each SM generation contains 15 states and 3 generations. $(3 \times 15 = 45)$

 $\mathbf{SU(5)} \supset \mathbf{SU(2)} \times \mathbf{SU(3)} \times \mathbf{U(1)}$

 $\mathbf{15} = (3,1)_6 + (2,3)_1 + (1,6)_{-4}$

 $\mathbf{45} = (2,1)_3 + (1,3)_1 + (3,3)_{-2} + (1,3)_8 + (2,3)_{-7} + (3,3$

 $+(1, 6)_{-2} + (2, 8)_3$

Here all U(1) charges are normalized to avoid fractions

SU(5) Unification But let's look at $\overline{5}$ and 10 dimensional representation $SU(5) \supset SU(3) \times SU(2) \times U(1)$ $\overline{5} = (\overline{3}, 1)_2 + (1, 2)_{-3}$ $\mathbf{10} = (3,1)_{-4} + (3,2)_{1} + (1,1)_{6}$ we have to rescale U(1) quantum numbers by 1/6 $\begin{array}{l} 10_{[\alpha\beta]} = (\overline{3},1)_{-\frac{2}{3}} + (3,2)_{\frac{1}{6}} + (1,1)_{1} \\ u^{c} & Q & e^{c} \\ \overline{5} = (\overline{3},1)_{\frac{1}{3}} + (1,2)_{-\frac{1}{2}} \\ d^{c} & L \end{array}$

Nothing left over & no exotics!

Matter Multíples in SU(5) Unification

An Entire SM generation fits into: $\overline{5} + 10$ In matrix notation, we have

$${f \overline{5}}$$
 : $(d_1^c, d_2^c, d_3^c, e, -
u_e)$

$$\mathbf{10}: rac{1}{\sqrt{2}} \left(egin{array}{cccccc} 0 & u_3^c & -u_2^c & u_1 & d_1\ -u_3^c & 0 & u_1^c & u_2 & d_2\ u_2^c & -u_1^c & 0 & u_3 & d_3\ -u_1 & -u_2 & -u_3 & 0 & e^c\ -d_1 & -d_2 & -d_3 & -e^c & 0 \end{array}
ight)$$

Chíral **ABJ** Anomaly

Since we have not added new exotic fermions, the anomaly cancelation still it is OK

SU(5) Gauge Bosons

$$24 \rightarrow (8,1)_{0} + (1,3)_{0} + (1,1)_{0} + (3,2)_{-5/6} + (\overline{3},2)_{5/6}$$
gluons A^{\pm}, A^{0} B $X \& Y$ bosons

All SM gauge bosons are successfully embedded

X & Y gauge bosons carry both color & electroweak charges simultaneously. They can connect quarks ↔ leptons!
X they can also turn quark directly to antiquark!

X & Y bosons have electric charge $\left\{\pm\frac{4}{3},\pm\frac{1}{3}\right\}$

Hypercharge Normalization

Overall hypercharge *Y* normalization finally fixed $SU(5) \rightarrow SU(3)_c \times SU(2)_w \times U(1)_Y$

Hypercharge is one of the non-Abelian generator

 $Q_{EM} = T_3 + Y = T_3 + c T_0$ $F(5) = \left(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{2}, \frac{1}{2}\right)$ $T_0 = \frac{1}{\sqrt{60}}((2, 2, 2, -3, -3))$ $C = -\sqrt{\frac{3}{5}}$ $C = -\sqrt{\frac{3}{5}}$ $F_{SU(5)} = \sqrt{\frac{3}{5}}Y_{SM}$ $D_\mu = \partial_\mu + i\frac{g_yY}{2}B_\mu$

The product $(\mathbf{g}_{Y} \mathbf{Y})$ must be preserved $\mathbf{g}_{Y}^{SU5} = \sqrt{\frac{5}{3}} \mathbf{g}_{Y}^{SM}$

SU(5) GUT

So, unification into a single GUT group such as SU(5) requires all generators to act with a **common** couplings

$$\mathbf{g}_{5} \equiv \left(\mathbf{g}_{3} = \mathbf{g}_{2} = \mathbf{g}_{1} = \sqrt{\frac{5}{3}} \ \mathbf{g}_{y}\right) \mathbf{or} \quad \alpha_{5} \equiv (\alpha_{3} = \alpha_{2} = \alpha_{1} = \frac{5}{3} \ \alpha_{Y})$$

Unification does not fix overall values of coupling but fix the ratios between couplings

$$\frac{g_3}{g_2} = 1 \qquad \qquad \sin^2 \theta_W = \frac{g_Y^2}{g_2^2 + g_Y^2} = \frac{3}{8} = 0.375$$

 $\alpha_3^{-1} \approx 8.5$

 $\alpha_2^{-1} \approx 29.6$

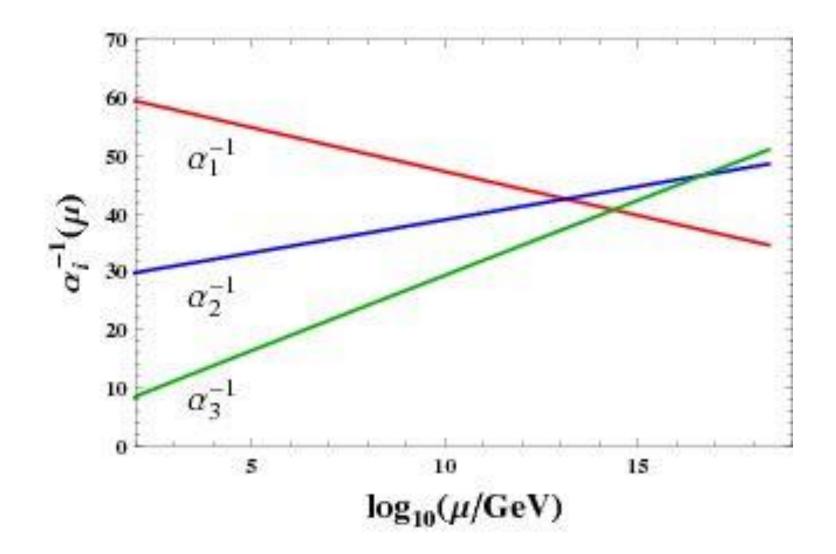
 $\alpha_1^{-1} \approx 59.1$

But at electroweak scale we have

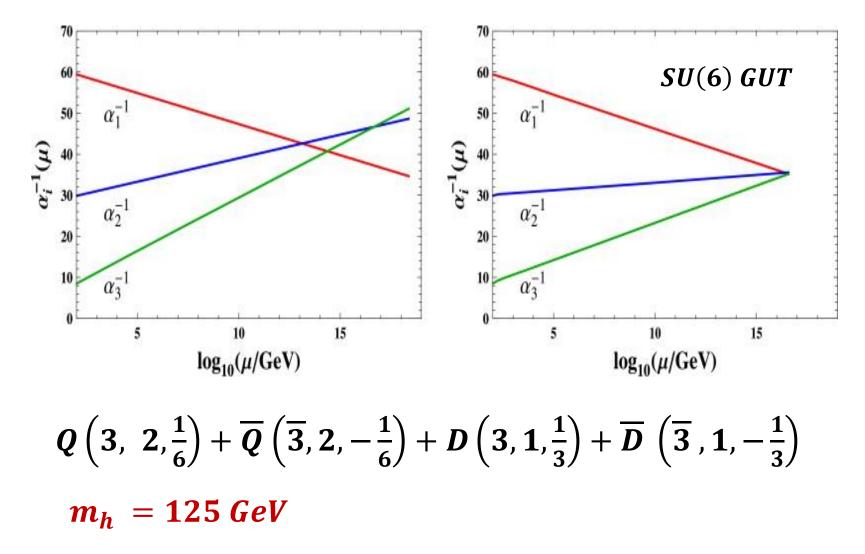
7

- Couplings are not equal
- $\sin^2 \theta_W \approx 0.23$, NOT 0.375

Unification of Gauge couplings



Unification of Gauge Couplings



J.L. Chkareuli, I. Gogoladze, A. Kobakhidze, Phys.Lett.B 340 (1994) 63

Spontaneous GUT Symmetry Breaking

We can use Higgs mechanism just as in the SM to break GUT symmetry

 $<\Sigma> <\phi>$ SU(5) \rightarrow SU(3)_c \times SU(2)_w \times U(1)_Y \rightarrow SU(3)_c \times U(1)_{EM}

In order to preserve $SU(3)_c \times SU(2)_w \times U(1)_Y$ subgroup of SU(5) symmetry the Higgs rep must contain a component (1, 1, 0) neutral under SM !

The smallest rep. that can contains (1, 1, 0) under the SM is the 24-plet = adjoin. -> traceless, 5×5 matrix.

$$<\Sigma>=V_{GUT}~diag~(2,2~2,-3,-3)$$

This is the **analogue** of demanding in the SM :

$$< \varphi > = \begin{pmatrix} \mathbf{0} \\ v/\sqrt{2} \end{pmatrix}$$

Spontaneous GUT Symmetry Breaking Can 24-plet (Σ) develop this minima $<\Sigma > = V_{GUT} \ diag (2, 2, 2, -3, -3)$ $V(\Sigma, \phi) = -m_1^2 tr \Sigma^2 + \lambda_1 (tr \Sigma^2)^2 + \lambda_2 (tr \Sigma^4)$ $-m_2^2 (\phi^{\dagger} \phi) + \lambda_3 (\phi^{\dagger} \phi)^2$ $+ \lambda_4 (tr \Sigma^2) (\phi^{\dagger} \phi) + \lambda_5 (\phi^{\dagger} \Sigma^2 \phi)$

Discrete \mathbb{Z}_2 symmetry is imposed to eliminate cubic terms. Here ϕ is 5-plet o0f SU(5) containing the SM Higgs .

For $\lambda_2 > 0$, $\lambda_2 > -\frac{7}{30}\lambda_2$, the potential has desired minima with $V_{GUT}^2 = \frac{m_1^2}{60\lambda_1 + 14\lambda_2}$

GUT Scale Spectrum

$$24 (\Sigma) \rightarrow (8, 1,)_0 + (1, 3)_0 + (1, 1)_0 + (3, 2)_{-5/6} + (\overline{3}, 2)_{5/6}$$

 $(8, 1,)_0 + (1, 3)_0 + (1, 1)_0$ become massive physical Higgs field with mass $O(M_{GUT})$. The X & Y gauge boson "eat" $(3, 2)_{-5/6} + (\overline{3}, 2)_{5/6}$ massless goldstone bosons from 24-plet & get masses $m_{x,y} \sim g_{GUT} V_{GUT}$

So, no additional new particle from gauge & 24 Higgs multiples at EW scale!

Doublet-Triplet Splitting Problem $\phi(5) = \phi_3(3,1)_{1/3} + \phi_2(1,2)_{-1/2}$

$V' = -m_2^2(\phi^{\dagger}\phi) + \lambda_4(tr\Sigma^2)(\phi^{\dagger}\phi) + \lambda_5(\phi^{\dagger}\Sigma^2\phi)$ Color triple ϕ_3 get mass:

$$-m_2^2 + (30\lambda_4 + 4\lambda_5)V_{GUT}$$

The SM Higgs doublet ϕ_2 get mass:

$$-m_2^2 + (30\lambda_4 + 9\lambda_5)V_{GUT}$$

We can make the SM Higgs doublet $O(M_Z)$ at tree level light while having color triplet $O(M_{GUT})$. But there are radiative corrections ...

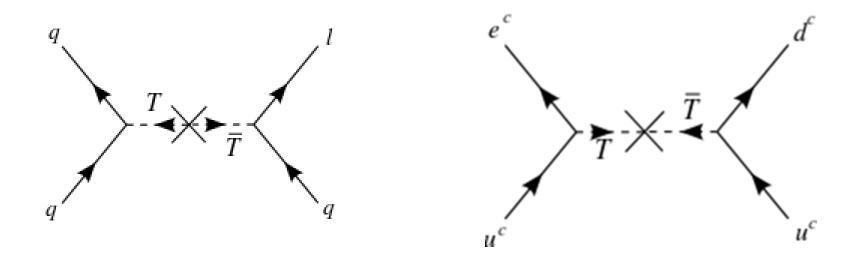
Gauge Hierarchy Problem

$$m_{\phi_2} = \left(m_{\phi_2}\right)_0 + \frac{\alpha_2}{4\pi}\Lambda^2 + \cdots$$

Proton Decay

Color Higgs triplet mediate Proton decay

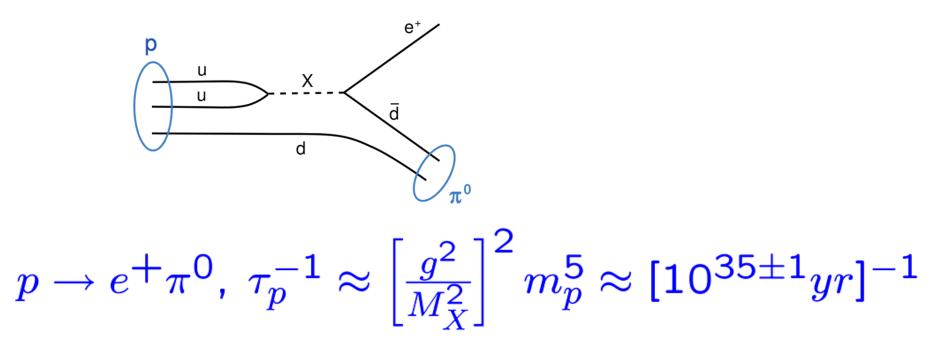
 $10_f 10_f 5_{\phi} + \overline{5}_f 10_f 5_{\phi}^*$



Color triplet $\phi_3 \equiv T$ mass needs to be more then 10¹³ GeV to satisfy current experimental constrain

Proton Decay

X & Y gauge boson mediate Proton decay



The current experimental limit is:

 $au(p
ightarrow e^+\pi^0)>1.4 imes10^{34}$ yr

Yukawa Sector

$$Y_{5} 5_{f} 10_{f} 5^{*} + Y_{10} 10_{f} 10_{f} 5_{H}$$
$$Y_{5} \overline{5}_{f} 10_{f} 5^{*} \Rightarrow Y_{5} (d^{c} Q H^{*} + L e^{c} H^{*}) \Rightarrow Y_{d} = Y_{E}^{T}$$

Yukawa (mass) matrix for down quarks is just the transpose of the Yukawa (mass) matrix for the charge leptons.

$$m_e=m_d, \qquad m_\mu=m_s\,, \qquad m_ au=m_b$$

Extrapolating down to EW scale using RGE equation it contradict experimental observations.

For third generation we find $m_b \approx 3 m_{\tau}$, This ratio becomes much better for SUSY scenario.

We also have:
$$\left(\frac{m_e}{m_{\mu}} = \frac{m_d}{m_s}\right)$$
 which is obviously contradictive

Are the Solution for $m_e = m_d$, $m_\mu = m_s$?

Yes, we need to expand the Higgs sector. Introduce a 45 rep as another new Higgs: Y_{45} $\overline{5}_f 10_f 45^*$

$$\left(\frac{m_e}{m_{\mu}} = \frac{m_d}{m_s}\right) \qquad \qquad \textbf{becomes} \qquad \left(\frac{m_e}{m_{\mu}} = \frac{1}{9} \frac{m_d}{m_s}\right)$$

Or consider effective Non-renormalizable couplings

$$\boldsymbol{Y_5} \ \boldsymbol{\overline{5}_f} 10_f 5_H^* + \boldsymbol{Y'_5} \ \boldsymbol{\overline{5}_f} 10_f \left(\frac{\boldsymbol{\Sigma}}{\boldsymbol{\mathsf{M}}}\right)^n 5^*$$

 Yukawa Sector, Up Quarks

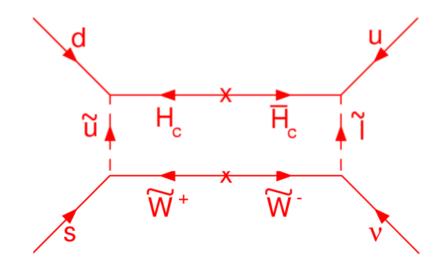
 $Y_{10}10_f \ 10_f \ 5_H$
 $10 = u^c \ (3,1)_{-2/3} + Q \ (3,2)_{1/6} + e^c \ (1,1)_1$
 $10_f \ 10_f \ 5_H \implies Y_U = Y_U^T$

The Yukawa(mass) matrix for the up quarks is symmetric

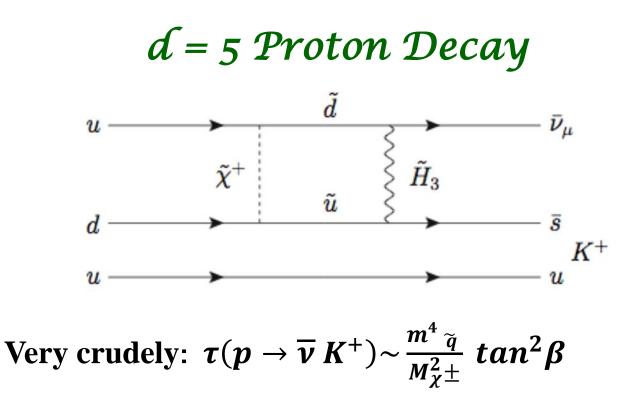
Low Energy Supersymmetry

- Resolves the gauge hierarchy problem;
- Provides cold dark matter candidate (LSP);
- Implements radiative electroweak symmetry breaking;
- Predicts new particles accessible at the collaider;
- Improves unification of the SM gauge and Yukawa couplings.

d = 5 Proton Decay



$$\begin{split} \Gamma_{d=5}^{-1}(p \to \bar{\nu}K^{+}) &\simeq 1.2 \cdot 10^{31} \, \mathrm{yrs} \times \left(\frac{0.012 \, \mathrm{GeV^{3}}}{\beta_{H}}\right)^{2} \left(\frac{7}{\bar{A}_{S}^{\alpha}}\right)^{2} \left(\frac{1.25}{R_{L}}\right)^{2} \\ &\times \left(\frac{M_{T}}{2 \cdot 10^{16} \, \mathrm{GeV}}\right)^{2} \left(\frac{m_{\tilde{q}}}{1.5 \, \mathrm{TeV}}\right)^{4} \left(\frac{190 \, \mathrm{GeV}}{M_{\tilde{W}}}\right)^{2} \,, \end{split}$$



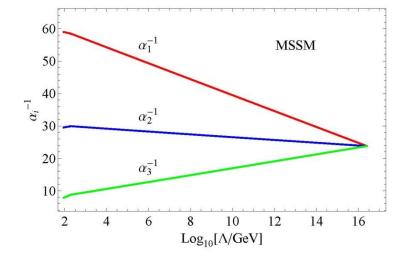
1) Reduce effective d $\tilde{u} H_c$ by non renormilizable couplings d $\tilde{u} \left(\frac{\Sigma}{M}\right)^n H_c$

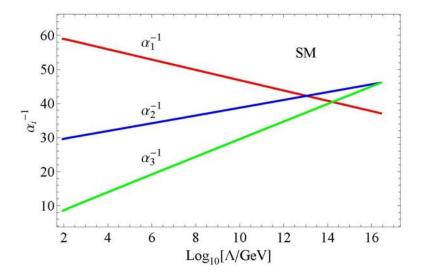
2) Affectively increase mass $m H_c \overline{H_c}$ by introdusing additional $(H'_c + \overline{H_c'})$

3) Make squarks much heavier compare gauginos

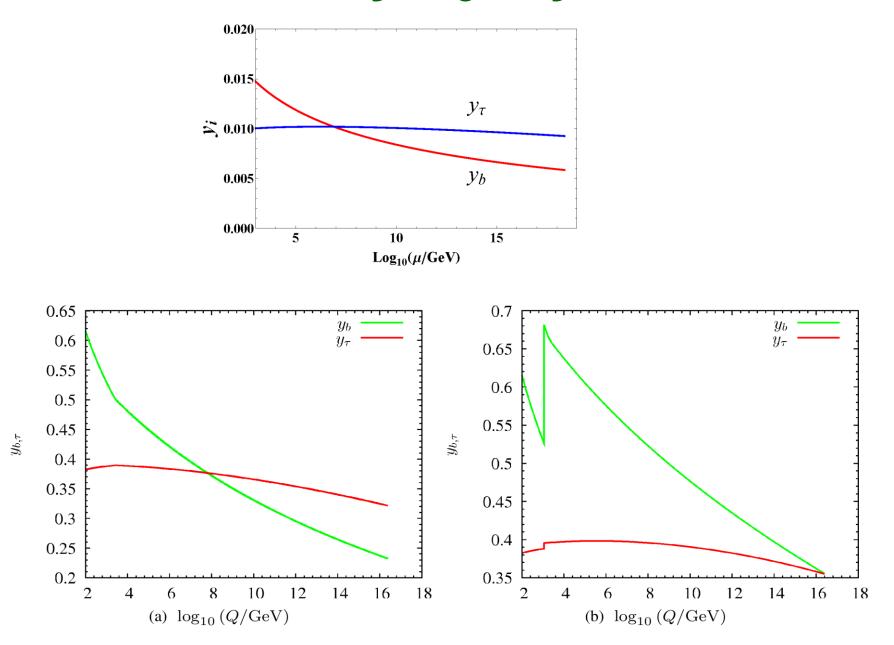
4) Consider possible structure for soft SSB masses and mixings

Improves Unification of the SM Gauge Couplings





b – τ Yukawa coupling unification ♥ SUSY

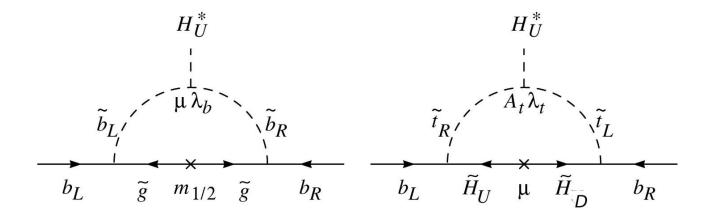


Finite SUSY threshold corrections

Dominant contributions to the bottom quark mass from the gluino and chargino loop

$$\delta y_b \approx \frac{g_3^2}{12\pi^2} \frac{\mu m_{\tilde{g}} \tan \beta}{m_{\tilde{b}}^2} + \frac{y_t^2}{32\pi^2} \frac{\mu A_t \tan \beta}{m_{\tilde{t}}^2} + \dots$$

where $m_{\tilde{b}}$ and $m_{\tilde{t}}$ stands for sbottom and stop mass.



where $\lambda_b = y_b$ and $\lambda_t = y_t$

Doublet-Triplet splitting in SUSY SU(5)

$$W_{D-T} = \overline{5}_{H} (\lambda 24_{H} + M) 5_{H}$$
$$\langle 24_{H} \rangle = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -3/2 & 0 \\ 0 & 0 & 0 & 0 & -3/2 \end{pmatrix} V$$

 $M_{H_c} = \lambda V + M \sim O(M_{GUT}) \quad M_H = -\frac{3}{2}\lambda V + M$

Míssíng Partner Mechanísmín SUSY SU(5)

$$W_{H} = M_{75}75^{2} + \lambda 75^{3} + M_{50} 50 \cdot \overline{50} + \lambda_{1} 50 \cdot 75 \cdot \overline{5} + \lambda_{2} \overline{50} \cdot 75 \cdot 5$$

$$5 = (1,2,3) + (3,1,-2)$$

$$50 = (1,1,-12) + (3,1,-2) + (\overline{3},2,-7) + (\overline{6},3,-2)$$

$$+(6,1,8) + (8,2,3)$$

$$75 = (1,1,0) + (3,1,10) + (3,2,-5)$$

$$+(\overline{3},1,-10) + (\overline{3},2,5) + (\overline{6},2,-5) + (6,2,5)$$

$$+(8,1,0) + (8,3,0)$$

The SM hypercharge $\frac{Y}{2}$ is $\frac{1}{6}$ times the charge quoted above.

Thank You

