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perature after the GUT transition imposed by the success of conventional BBN [13] prefer
a SUSY breaking scale that is O(10) TeV. This and other key model predictions (r, ns,
neutrino masses, ng/s, the dark matter density, the SUSY scale, BBN and the Higgs mass
my,) are highlighted in red in Fig. 1.
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Figure 1: The general structure of our scenario for particle cosmology.

The layout of this paper is as follows. In Section 2 we review the construction of our
model, reviewing the assignments of matter particles to SU(5) x U(1) representations and the
ginglet inflaton and flaton fields, and highlighting the importance of the \g coupling. Then,
in Section 3 we review some cosmological aspects of our model, focusing on the reheating
epoch following inflation, which we assume to be strong, and the subsequent breaking of the
GUT symmetry via thermal corrections to the effective potential for the flaton. The amount
2ff entropy, A_, generated during the transition to the SM gauge group is an important aspect

s zlrl;vai?alyms. {Xs we discuss in Section 4, strong reheating implies the copious production
inos, which decay subsequently to CDM particles, assumed to be neutralinos. Their
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No-Scale Supergravity

Natural vanishing of cosmological constant (tree level)
with the supersymmetry scale not fixed at lowest order.
(Also arises in generic 4d reductions of string theory.)
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Globally supersymmetric potential once
K (canonical) picks up a vev
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We present a simple model for primordial inflation in the context of SU(V, 1) no-scale n = 1 supergravity, Because the
model at zero temperature very closely resembles global supersymmetry, minima with negative cosmological constants do
not exist, and it is easy to have a long inflationary epoch while keeping density perturbations of the right magnitude and
satisfying other cosmological constraints, We pay specific attention to satisfying the thermal constraint for inflation, i.e.
the existence of a high temperature minimum at the origin.
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No-Scale models revisited

Can we find a model consistent with Planck? Ellis, Nanopoulos, Olive
) A
Start with WZ model: W = gqﬂ — 20"

Assume now that T picks up a vev: 2<Re T> =c¢
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Redefine inflaton to a canonical field V. = |Wa|?

¢ = v/3ctanh (%)
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The ﬁat d_u'ectmn 1S hfted by a non—-«rennrmahzable superpaten

- of order the supersymmetry—brea,kmg scale Far further detaﬂs see [18].
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Therefore, to obtain a GUT scale vacuum expectation value (Vev) with an O(l) A, we shoul
have n > 4. Once the flat direction is lifted, we expect the flaton (and flatino) mass to b

3 The GUT Phase Transition
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Another cnsmologlcal consideration that should be takénw_ 3ssful BBN,
which requires the reheating temperature after the Lransmtlon‘to be at least 1 MeV, so as
to ensure a radiation-dominated universe during BBN. The reheating tempera ure can be
written as [11] T
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- and combining Egs. (35) and (36) we can write
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ABSTRACT

We analyze the possible magnitude of the supersymmetric contribution to g, — 2 in a flipped
SU(5) GUT model. Unlike other GUT models which are severely constrained by universality
relations, in flipped SU(5) the U(1) gaugino mass and the soft supersymmetry-breaking masses of
right-handed sleptons are unrelated to the other gaugino, slepton and squark masses. Consequently,
the lightest neutralino and the right-handed smuon may be light enough to mitigate the discrepancy
between the experimental measurement of g, —2 and the Standard Model calculation, in which case
they may be detectable at the LHC and/or a 250 GeV ete™ collider, whereas the other gauginos
and sfermions are heavy enough to escape detection at the LHC.
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Input GUT parameters (masses in units of 10'® GeV)
Mgcyr = 1.00 Mx = 0.79 V.= 1.13
Ag = 0.1 Xs = 0.3 Ae = 0.001
gs = 0.70 gx = 0.70 Thys = 0.05 eV
Input supersymmetry parameters (masses in GeV units)
Ms = 2460 M, = 240 = 4770
mi10 = 930 mg = 450 mq1 =0
M4 = 2100 Ao/Ms = 0.67 tan 8 = 35
MSSM particle masses (in GeV units)
my = 84 m;, = 4030 mg = 5090 |
mMy., = 2160 My, = 5080 m,, = 5080
mp, = 101 mpg, = 1600 ms, = 1010
™mg, = 4470 mg, = 4250 Mg, = 4170
m;, = 4410 mg, = 4170 mg, = 4400
m,+ = 2160 mg,a = 2100 m g+ = 2100
Other observables
Ay, = 150 32 10 Qb — 0238 mp = 122 GeV
Normal-ordered v masses: T, se+40|no = 4.6 X 103% yrs Tp_m+7ro|No = A.7:5% 10°9 s
Inverse-ordered v masses: Tpet+no0lio = 1.4 X 10°% yrs Tp_,”+.,ro|10 = 9.8 x 103% yrs

Table 1: Parameters and predictions of an FSU(5) point that yields Aa, = 150 x 10711,



Data-driven
1

T

Flipped SU(5)

CMSSM

50 100 150 200 250

300 350

Aa, (x10''): GUT models vs Standard Model calculations

Figure 3: Comparison of the ranges of the discrepancy in a, between the combination of
the BNL and Fermilab measurements with the dato-driven estimate taken from the Theory
Initiative [{] (green line), from the BMW lattice calculation [17] (black range), and the ranges
found in flipped SU(5) in this paper (red range, general region shown as solid line, extension
in exceptional region shown dashed) and in the CMSSM [9] (blue range).
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 FULL CALCULABILITY OF THE EFFECTIVE NO-
SCALE  SUPERGRAVITY THEORY...!!

Around the fermionic vacuum (all string moduli
fixed).
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Very Successful Particle Physics Phenomenology
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Accommodates R2/ Inflation

i) F,Fsbar o,

ii) Inflaton : y=¢,= sinw ¢, - cosw ¢, bar
tanw = ¢, /b, bar

i) Goldstino: z=Q,
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From R? Gravity to No-Scale Supergravity

* Pure R? gravity 4= / d'z\/—gaR?
* Is conformally equivalent to De Sitter model
A = —/d‘*xf( R 8“@8#0—4%)

* Starobinsky model also has linear R term
A = % d'z\/—g (R+ &R?)

* Equivalent to SU(1,1)/U(1) no-scale

* Can introduce conformally-coupled scalars:

A = 2—12 d*z\/—g

N-1
~ D! ia 4 Lo
SR+ aR? — 2? ; (6% 0,0! + 319 |2R>

* Equivalent to generalized no-scale model




