EMCI/EMP: Concept and Desired Specs

- Solution with 2 stages, interconnected in star topology
- Components from FE to BE:
 - **EMCI**:
 - Based on IpGBT and VTRx+
 - Analog: 8 differential ADC channels 10 bit, 2 DACs (current, voltage)
 - Digital: 16 GPIOs, I2C (SPI and JTAG only via GPIO emulation)
 - Remote 12V power
 - Radiation limits: beyond 200 Mrad TID, 1×10^{15} NIEL, ? SEE
 - **EMP**:
 - Drives several EMCIs (>=8 optical) or custom links and interfaces them to control network (Ethernet)
 - No particular rad tolerance
 - Does not require separate computing platform, just power (12V?) and Ethernet communication interface
Embedded Monitoring and control Processor (EMP)

Should provide connectivity to at least 8 EMCIs and N Multi-purpose ports
Specs doc to be circulated for feedback
EMP Receiver Cost Estimate

- Some discussion on JIRA (Paris, Piotr, Schlenk)
- Consider that cost will be dominated by SoC
- Considering Zynq Ultrascale+
- Using SoC on commercial SoM gives cost advantages, e.g. Enclustra Mercury+ XU8, but have to deal with high-speed board connectors...
- Other components:
 - SFPs+housing (50CHF? per link)
 - Clock?
 - Jitter-cleaner?
- Current baseline estimate: still 1500CHF (with 8 links)
Embedded Monitoring and control Processor (EMP)

Variant with System-on-Module (SoM) with MGT-compatible mezzanine connectors
Should provide connectivity to 8|12|16 EMCIs and N Multi-purpose ports

- Zynq SoM e.g. Enclustra Mercury+ XU1
- Zynq ZU6CG
- Digital I/O via PS: JTAG, GPIO, CAN, USB, SPI, I2C, UART, MIO
- eMMC flash
- Digital I/O via PL (also PL possible)
- MGT I/O via PL @6Gbps
- DDR Memory
- Analog I/O with XADC via PS
- USB Type A
- SD-card flash
- Ethernet RJ45
- Power 12V

Analog I/O with XADC (also PL possible)

To custom devices

8|12|16x SFP+ port

To EMCIs

Control Network

Power input

17 ext. diff. inputs for V, I
Dual 12-bit 1Msps ADC
SoM for EMP?

- Potential advantages:
 - Cost (mass production)
 - Component selection/integration/validation already done for many components (Eth, USB, mem, flash,)
 - Powering scheme for SoC already solved, usually just need to provide 5-15V DC input
- Example: [Enclustra Mercury+ XU8](#)
 - XCZU4CG-1FBVB900E (with 16@12.5 GTH transceivers)
 - 3x 168-pin Hirose FX10 connectors with 236 user I/Os
 - PS: 2GB ECC SDRAM, PL: 1GB
 - Flash: 64M QSPI, 16G eMMC
 - PS peripherals: USB, PCIe, 2x GB Eth, CAN …
 - Supply: single 5-15V DC, Dimensions: 74 x 54 mm²
 - 672 USD for 30+ quantities (single 739 USD)
 - Development: baseboard available (PCIe or stand-alone use), with FMC connector
EMP Integration/Aggregation - Ideas

Single version
- Provide DIN-rail mounting support, no housing (can be added by user)

1U 19” crate with 3-4 EMPs
- Fibre connections with 2-row SFP+ cages or fibre aggregation modules (MTP)
- Could maybe fit 4x EMPs with 12 fibres each or 3x with 16 fibres each
- 2x unmanaged Gb Ethernet switch for 2-port network integration
- Possible cooling requirements need to be evaluated
- Fix EMP on internal DIN-rails?