
XRootD experiences from the
UK: ECHO and T2

James Walder 
On behalf of UK storage community

XRootD + FTS Workshop, Ljubljana, Slovenia 
27-31 March 2023 Covering inputs and activities from (non exhaustive):

Rob Appleyard, Tom Byrne, Rob Currie,  
Alastair Dewhurst, Matt Doidge,  

Katy Ellis, Gerard Hand, Alison Packer,  
Alex Rogovskiy, Steven Simpson,  
Sam Skipsey, Jyothish Thomas,

Outline
• Overview of Storage in the UK

• RAL-LCG2: ECHO

• Object store: librados and Erasure Coding reminder

• Main architecture developments since last workshop

• Improvements for:

• Deletes, Checksums, Davs, Reads/Writes, ReadV,

• Token support

• T2s:

• XRootD + CephFS; Lancaster

• Monitoring

• Caches

• UK feedback / inputs

• Summary

2

T1 and large (storage) T2s highlighted

Storage in the UK
• UK a heterogeneous source of storage technologies

• More recently, (significant) storage is being consolidated to 5 main T2 sites (+T1)

• With DPM EOL; smaller sites typically to become storageless:

• Or, migrating to dCache with existing storage.

• XRootD+CephFS selected for some larger sites (see later slides)

3

Site Storage (now) Storage (if changing)

RAL-LCG2 (T1) Echo (XRootD+Ceph)
UKI-LT2-Brunel DPM XRootD+CephFS
UKI-LT2-IC-HEP dCache
UKI-LT2-QMUL StoRM (lustre)	
UKI-LT2-RHUL DPM Storageless (SE – QMUL)
UKI-NORTHGRID-LANCS-HEP XRootD+CephFS (+ DPM) XRootD+CephFS (+dCache)
UKI-NORTHGRID-LIV-HEP DPM dCache
UKI-NORTHGRID-MAN-HEP DPM XRootD+CephFS
UKI-NORTHGRID-SHEF-HEP Storageless (SE – RAL-LCG2)	
UKI-SCOTGRID-DURHAM DPM (TBD)
UKI-SCOTGRID-ECDF DPM dCache
UKI-SCOTGRID-GLASGOW Echo (XRootD+Ceph) +

CephFSUKI-SOUTHGRID-BHAM-HEP Storageless (SE – MAN + VP)	
UKI-SOUTHGRID-BRIS-HEP (XRootD+HDFS)
UKI-SOUTHGRID-OX-HEP Storageless (SE – RAL-LCG2)	
UKI-SOUTHGRID-RALPP dCache	
UKI-SOUTHGRID-SUSX Storageless (SE – QMUL)	

Glasgow

Lancaster

Manchester

QMUL

ImperialRAL-LCG2

https://its.cern.ch/jira/browse/ADCINFR-251
https://its.cern.ch/jira/browse/ATLDDMOPS-5588

RAL-LCG2 Tier-1: ECHO storage
• ECHO: Ceph-based object store with data access provided through XRootD:

• Also deployed for Glasgow ATLAS Storage

• Over 50PiB raw storage (+ 30PiB with upcoming deployment).

• Nautilus + Centos7 (upgrade planning in progress)

• 8+3 Erasure Coding 

• Currently ~ 240 Storage Nodes (SN), with ~ 5000 OSDs

• Host level failure domain (i.e. OSDs from placement group placed across different SNs).

• New hardware being deployed with uniform rack layouts;

• 2 service nodes (e.g. XRootD Gateway, Ceph Mon) 
+ several storage nodes per rack, with ToR routers.

• May facilitate future move to rack-level domain failure mode

• Also providing cephFS, S3 endpoints, etc. at RAL

• Data written to ECHO via Ceph’s libradosstriper (originally developed by S. Ponce – CERN) (next slide …)
4

Object storage in ECHO
• XrdCeph (xrootd-ceph) OSS plugin interfaces XRootD to librados(striper)

• GridFTP plugin also successfully deployed

• Significant effort added recently to develop XrdCeph for efficient usage in Run-3 and beyond

• Object store; i.e. no directory structure - the path is the name of the file/object

• Libradosstriper (in a nutshell):

• Converts a file into (typically) 64MiB (ceph) objects (with a .016x encoded suffix to the ‘file’ name)

• First object encodes additional information in the extended attributes of the file (e.g. total and object size).

5

File} } }
64MiB 64MiB64MiB 64MiB

Object storage in ECHO
• XrdCeph (xrootd-ceph) OSS plugin interfaces XRootD to librados(striper)

• GridFTP plugin also successfully deployed

• Significant effort and recently to develop XrdCeph for efficient usage in Run-3 and beyond

• Object store; i.e. no directory structure - the path is the name of the file/object

• Libradosstriper (in a nutshell):

• The following steps are standard Erasure Coding for Ceph (librados):

• 64MiB Ceph object:

• Data is split into 4kb (or 32kb depending on pool) stripes on the primary OSD:

• Stripe size define the smallest amount of data that can be reconstructed.

6

f’{file_name}.{object_index:016x}’

…

Object storage in ECHO
• XrdCeph (xrootd-ceph) OSS plugin interfaces XRootD to librados(striper)

• GridFTP plugin also successfully deployed

• Significant effort and recently to develop XrdCeph for efficient usage in Run-3 and beyond

• Object store; i.e. no directory structure - the path is the name of the file/object

• Libradosstriper (in a nutshell):

• The following steps are standard Erasure Coding for Ceph:

• Each stripe encoded into data (8) and parity (3) chunks (8+3EC) 
and stored across the (11) OSDs

7

Object storage in ECHO
• XrdCeph (xrootd-ceph) OSS plugin interfaces XRootD to librados(striper)

• GridFTP plugin also successfully deployed

• Significant effort and recently to develop XrdCeph for efficient usage in Run-3 and beyond

• Object store; i.e. no directory structure - the path is the name of the file/object

• So - putting it all together:

• Objects on disk are made up of all the chunks for that object:

8

Object storage in ECHO
• XrdCeph (xrootd-ceph) OSS plugin interfaces XRootD to librados(striper)

• GridFTP plugin also successfully deployed

• Significant effort and recently to develop XrdCeph for efficient usage in Run-3 and beyond

• Object store; i.e. no directory structure - the path is the name of the file/object

• Libradosstriper (in a nutshell):

• e.g. a typical ~ 10GB file,

• ~ 1700 total ceph objects (including the EC);

• ~1400 unique OSDs.

• Data situated across ~230 SNs,  
and on average occupying 6 OSDs per SN 
(typically ~ 20–24 OSDs per SN).

9

Typical 10GiB file OSD usage per SN

#OSDs/SN

C
ou

nt

• As of the last workshop; general XRootD structure was:

• External Gateways (e.g. FTS, write-back from WN jobs)

• Memory cache proxy + Xrootd server

• Alice and AAA similar configs (but separate hosts)

• Proxy:

• caching, forwarding, and authZ/N

• Server: OSS plugin using XrdCeph

• Updated configuration:

• XRootD ‘unified’ server instance; Combines AuthZ/N + XrdCeph; no (XRootD) Caching 
(A buffer now added into XrdCeph)

• XRootD ‘TPC’ server instance;

• the ‘unified’ redirects to this instance for root:// TPC writes 
 to Echo;

• ~ same configuration as ‘unified’ (without ofs.tpc redirect).

• Future: Soon to add CMSD redirection; instead of DNS round-robin alias (See backup)

• WNs (each WN host):

• XCache + XRootD server for stage-in; stage-out (currently) via the external gateways

• Caching layers help readV and small read requests:

• Improved readV code (see later), aiming to remove the Xcache

ECHO: Architectural updates

10

Xrootd-proxy

Xrootd-ceph

Xrd-tpc.sh

XrdCeph
Libradosstriper

Ceph

root: tpc pull

xrootd-unified Xrd-tpc.sh

XrdCeph
Libradosstriper

Ceph

root: tpc pull

xrootd-tpc

XrdCeph

Ceph

Libradosstriper

Gateway

Gateway

Previous

Current

ECHO: Improved Checksums and Deletions
• Deletions

• performed ‘live’ against Ceph (i.e. no database / asynchronous operations)

• Proxy + Sever configuration created serialisation of delete requests from the client.

• i.e. one slow request (e.g. due to ceph operations, etc) would stall all subsequent  
queued requests

• Removing the proxy (e.g. the ‘unified’ config) allows deletes to be parallelised:

• Small dependency on file size

• Concurrency appears to have stronger dependence

• May require further work as filesizes and deletion counts increase.  
 

• Checksumming:

• External python script now used to compute / retrieve checksum.

• Additional overhead on Gateway (compared to the data transfer):

• data needs to be read back from Ceph to the gateway.

• (x2 bytes received in to the NIC, x1 bytes out);

• safe for the paranoid.

• ~ 10s / GiB for checksum computation

• Currently attempting to improve the speed of retrieval of cksums from metadata

• Several discussions on improving further: e.g. on-the-fly  
checksumming; and computations at the OSD level.

11

<latexit sha1_base64="dmifLmXScErv2L0NPZWr0ivHCkg=">AAACpnicbVHJjtNAEG2bbTBbgCOXFhFo4BDZo7AcR8wcuIAGiSQjxVbobleSVnqxehkpWPkLfo5fgQvtjoWYGUpq6dV7VdW10EZw6/L8Z5LeuHnr9p2Du9m9+w8ePho8fjK12hsGE6aFNueUWBBcwcRxJ+C8MUAkFTCjm5NOn12AsVyrr27bQCXJSvElZ8QFajH4UVJYcdU6Qr0gZtcKs8tKpxvjBWTtDr/E+BMQhU+9iSl4Lm2FyzKb7qviLqK3wJaS1zH1xBsDykV1/CbvtFO4iG4xjm5JtXNaxugSVP23h2wxGOajPBq+DooeDFFvZ4vB77LWzMvwIRPE2nmRN65qiXGcCQgDeQsNYRuygnmAikiwVRu3t8MvAlPjpTbhhYYj+29GS6S1W0lDpCRuba9qHflfjWq9CTPZIOK1Nvx7KE8E7k5lL7fklu+rlqvGO1Bs39HSC+w07m6Ga26AObENgDDDw1CYrYkhzIUbdNsqru7mOpgejYq3o/GX8fD4Q7+3A/QMPUeHqEDv0DH6iM7QBDH0K8HJq+R1eph+TifpbB+aJn3OU3TJ0m9/AFOOyr0=</latexit>

Mean Duration [ms]
Version

Current 450
Dev 140

<latexit sha1_base64="A8tYH3e4aMVEs3g2zWbQYQwnxy8=">AAAEDHicfVPPb9MwFH5L+DHKr8KOXCwKiFOVtB3jANI0DnBBGoJuk5poOK7bWnXiyHaQuqhXjsAfww1x5X/gb0FIvKRZ1TZjtmw/f+/7np334iiVwljP+73luFeuXru+faNx89btO3eb9+4fGZVpxvtMSaVPImq4FAnvW2ElP0k1p3Ek+XE0fVX4jz9xbYRKPthZysOYjhMxEoxahFTzLwQQAYcxCEggBwsU9xlIXDXMEZHYC6uBTAsKUtwVfo5IjjiBJzjW+3uMdoaMc99btCnGJzAAAyGuAfYiYozM4UpErxbvEbyAlzj7GEXAQc3vQRt6sLuM6W8wfLKDmHepurNUd5aMpabUv/6verc8caHu1hjF6d1L1HulZqHubTC61c0vVvuo9st8necywurYskbxSkYDnBPMca22p82W1/bKRuqGXxktqNrhafNPMFQsi3limaTGDHwvtWFOtRVM8nkjyAxPKZvSMR+gmdCYmzAv/9E5eYzIkIyUxpFYUqKripzGxsziCJkxtROz6SvAC32RUlNLI4NOMlFanGF4KknxIMz6lezoeZiLJM0sT9jiRqNMEqtI8TLIUGjOrJyhQZkW+FGETaimzOL7aWC2/M3c1I2jTtt/1u6967X2D6q8bcMDeAhPsVZ7sA9v4BD6wJyPzmfnq/PN/eJ+d3+4PxdUZ6vS7MBac3/9A6XU3Cc=</latexit>

Size Mean [s]

0 <=1MiB 0.45
1 1–10MiB 0.42
2 10MiB–1GiB 0.51
3 1–3GiB 0.73
4 3–10GiB 1.10

Reads / Writes
• Libradosstriper designed to provide mostly atomically correct behaviour for all r/w operations

• Less optimised for WORM style operation

• Locking and unlocking behaviour for small reads / writes induces overhead

• Traditionally used memory cache / XCache to try and read large blocks;

• Not always behaved as assumed, or in bypass mode, exposes all reads to ceph

• WebDav: XRootD layer using 1MiB internal buffer and (potentially) can pass through smaller requests

• Root: typical 8 MiB chunk size worked ok;

• paged-reads / writes => tiny requests. 

• XrdCeph – introduced internal buffer (no caching) for reads / writes:

• 16MiB buffer is optimal in most cases for full file copies.

• AAA (smaller buffer size) is ok, but observe some  
read amplification due to small read sizes.

• readV developments (next slide …) may reduce the dependency on buffering reads.
12

Reads / Writes
• Libradosstriper designed to provide mostly atomically correct behaviour for all r/w operations

• Less optimised for WORM style operation

• (Un)Locks for small reads / writes => overhead

• XrootD caching helped to mitigate this; but with side-effects 

• WebDav: XRootD 1MiB internal buffer

• Root: typical 8 MiB chunk size worked ok;

• paged-reads / writes => tiny requests. 

• XrdCeph – introduced internal buffer (no caching) for reads / writes:

• 16MiB buffer ~ optimal.

• AAA (smaller buffer size) OK: 
some read amplification when small reads.

• readV developments (next slide …) may reduce the dependency on buffering reads.

13

Evolving libradosstriper: readV use-case
• Libradosstriper does not support readV

• Currently unfold a readV request into sequential reads:

• Slow, due to striper overhead of each small read.

• Use of XCache (on WNs) to prefetch large blocks of data:

• Now we bypass the striper for read(V):

• Batched readVs to ceph using librados

• Ceph on primary OSD of the PG handles 
 the details.

• Additional delay request timeout sent to  
client is also useful. 

• Running on small set of production Worker Nodes hosts;  
significant improvements observed.

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

File / radosstriper

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Object 0 Object 1 Object 2 Object 3

Read(2,11) -> { read(, 2, 2); read(, 0, 4); read(, 0, 4); read(, 0, 1) }

Slow request

(WLCG) Token support
• Dedicated VM for tokens testbed (running 5.5.3):

• Participation in WLCG compliance testbed and CMS token SAM tests

• Aside from (usual) object store caveats (e.g. directories); token support should follow normal XRootD:

• WLCG compliance tests:

• Test failures due to lack of  
directories in Object Store

• Either in creation, or teardown  
steps (issue#45)

• CMS SAM test:

• Passing current ‘tkn’ tests;

15

https://ci.cloud.cnaf.infn.it/view/wlcg/job/wlcg-jwt-compliance-tests/job/master/lastSuccessfulBuild/artifact/reports/reports/latest/se-ral-test-xrootd/report.html#
https://github.com/indigo-iam/wlcg-jwt-compliance-tests/issues/45
https://cmssst.web.cern.ch/siteStatus/detail.html?site=T1_UK_RAL

CephFS+XRootD: Lancaster
• Consolidation of storage at large UK sites:

• Lancaster: prototype of CephFS + XRootD implementation

• Deployed ~ 10PB available storage

• Primary motivation / requirements:

• ‘lightweight’ and flexible frontend

• A system where the loss of a whole server does not cause loss of data 
ie. CephFS

• Networking:

• All nodes are connected with 25Gb NICs

• racks are connected by a 100Gb backbone.

• The site link to the NREN is a dedicated 40Gb (4x10). 

• Ceph:

• 3 admin, 2 MDS and 29 OSD nodes

• running Ceph Pacific.

• Over time have needed to set up CMSD and scale out more XRootD servers
16

CephFS+XRootD: Improved WN file access
• CephFS: POSIX-compliant:

• mounted on XRootD servers, and (read-only) on WNs

• WNs: extended ACLs; disallow reading of directories by users not in the specified groups  
(i.e. only atlas can read /atlas)

• Rucio providing new posix.Symlink protocol  
implementation: (testing with ATLAS)

• Keep job stage-out going via XRootD for  
auditing / authz / simplicity.

• Initially, problems with ACLs:

• New directories with default ACLs;  
not allowing writes

• A script now runs via ofs.notify to check and fix  
permissions on new directories. 

• Servers could become overloaded with (External / FTS)  
transfers and Checksum calculation;  
will hopefully free up the bandwidth for this.

17

Stage-in to WN transition

Transition to symlink from xrootd  
download

CephFS+XRootD: Monitoring
• Successful monitoring critical for successful operations (accuracy and functionality)

• CephFS+XRootD @ Lancaster

• XRootD summary reporting

• Metadata: for correlation with  
redirection events

• Resource usage:

• I/O

• Buffers

• FDs, connections:

18

• Use of existing software:

• Persistent, stateful
services

• Prometheus

• Loki

• AlertManager

• Grafana

• Pulled metrics

• Node exporter

• Ceph exporter

• Pushed metrics

• Loki recordings
(pushed to
Prometheus with
remote-write)

• Redirection events

• Various error classes

• Use of bespoke software:

• Miscellaneous

• Static expectations

• Discs acting as OSDs

• Hosts expected

• Labelling

• Physical location

• Rack, position, socket

• Ceph health probes

• Covers details missing from
standard Ceph metrics

• SMART-reported disc errors
and defects

• Slow, so remote-write
staggers the delivery

• Pool/PG complaints on OSDs

•

• ‘Stalling’ xrootd with  
observed with increasing 
numbers of open FDs,  
as connections are opened 
but transfers appear stalled

UK: Cache usage (VP and XCache)
• XCaches used:

• Internally on each WN at RAL

• Internally (i.e. transparently) at a few sites

• Stashcache (ECDF)

• Site ingress; e.g. storageless  
(more likely useful for latency, than hit rate)

• Also exploring the usage of Virtual Placement for ATLAS:

• Analysis workflows – using partial file reads

• Example (last 21 days); For Oxford Xcache, usage from normal  
production workflows included

19

VP sites

VP/non-VP workflows: Oxford

<latexit sha1_base64="AX5GFKL745VWHVA/W1apkzhcndo=">AAAFrXicjVTbTttAEDUlaWl6g/axL6siaB/A9TqOL29cWhHUSlAggIRptHY2yYq11/KuW1ErP9I/67f0pWPHlFyg6kiRTs7OnJ0Zz2yQcCaVYfxaeLBYqz98tPS48eTps+cvlldenkqRpSHthIKL9DwgknIW045iitPzJKUkCjg9C652i/OzbzSVTMQn6jqhlxEZxKzPQqKA6q4s/sx9GRHOG35AByzOFQkyTtJRzgsbNXwlkjTjtLEdhlRKVIigdeRHGVcM7s+iODfBe5T3WSoVIqUblaN7nATn4juLBxOOvt84ZqpQ7Xza3zw+6Jy09472P2wenG+2Px4CXdhRu/P5PzxAy49Yr8x4V2SxQvO2Pv3XMtwN28Il3XQ33KYz64Fte8PCrYLGZmvDcqwy5yxCoo8CvztkU9fMRJtOS3dPdsY0voUTHhbWcUVjS7cBTulHDBp/rz6YZ46jXQ+i9+b0oUbdutE3SjilH1wnZOKGeX2EjCoa66279G89UFP39kr9bZg7MqAooTCqsQLod2E0e7PRnq17jumvlbytYwtXeMKghbjljXnokGs4gCfuSAnMz79aVJTdrGhDN5tzn9hs6k3sjWlDt113Ul4mJJU0pjdNmq/AtZpV1o7esu+oAHmGXmYNfMvUHccbV+AHQikRlQPr07j3dwEbo+7yKsSUhuYBrsCqVtlhd/m33xNhFkG3Qw5f9AIbibrMSQpLyCnsciZpQsIrKOkCYEwiKi/z8hEZoTVgeqgvUvjB2pTsZEROIimvowA8I6KGcvasIO88C4S4gqJg0dfQUKTsB8gTjooXS06npPruZc7iJFM0DscZ9TOOlBi/Oj2W0lDxawAkTBkUhcIhSUmo4IFrQLfwbG/mwampY1u3vlirWztV35a019ob7Z2GNUfb0traodbRwtpC7W3NqOH6+3qn7te/jl0fLFQxr7Qpqw/+ALvhcJ8=</latexit>

Access type first accesses following accesses
Site UKI-SOUTHGRID-OX-HEP RHUL UKI-SOUTHGRID-OX-HEP RHUL

Count 408,641 38,837 166,415 125,474
Sum of b hit 275.8TB 1.8TB 241.1TB 14.6TB
Sum of b miss 92TB 894.6GB 4.4TB 10.4TB
Sum of b bypass 0B 11.5GB 0B 3.9GB
Average percentage read 96.972% 6.141% 75.159% 14.807%
Average rate 10.43 0.23 123.319 0.688
Average sparseness 96.843% 7.561% 90.07% 52.779%

Caches and Monitoring at ECDF
• ECDF; interests in Monitoring and XCache

• Recently observing, and trying to understand 
significant differences between:

• node_exporter metrics from XCache host 
and,

• Set of XRootD-based monitoring systems

• Monitoring stacks agree, but not yet and explanation 
of differences to node_exporter

• Also run StashCache; while load can be high, 
is running well:

• (Plot of last 6 month usage by 
requests and VO).

20

•Plot showing all 3 XRootD monitoring stacks over several days.
Agreement!

• Comparison of various Monitoring stacks:

• Custom “.cinfo parser” and a monitoring stack (‘truth’ interogation’) Edinburgh

• Implemented full OSG XRootD monitoring stack OSG monitoring

• Implemented full RAL XRootD monitoring stack RAL monitoring

Feedback / Summary
• The UK runs a heterogeneous set of storage technologies at varying scales: many using XRootD

• ECHO:

• New dedicated effort for supporting the XrdCeph plugin.

• Pivoting towards developments needed for the challenges of HL-LHCs (and non-WLCG VOs).

• Lancaster: Deploying CephFS takes a lot of effort:

• Successful high-throughput XRootD deployments need to be built wide

• Monitoring is key

• Recent releases have had some issues (particularly) for UK configurations;

• Benefited from xrootd developer support / responses.

• A suite of FTs using Rucio + FTS, against site test RSEs could be set up across the UK and beyond, 
 to test our various use-cases.

• Many other activities, not mentioned here: Shoveler, packet marking, …  

• The UK is gaining considerable expertise with XRootD and tends to propose it as a frontend for new users into HEP-like/large-
scale data transfer orchestration and operations:

• Improved documentation for non-experts in ‘real-world’ best-practise setups desirable;

• Attempting to improve our feedback into the XRootD community.

21

Summary

22

Adding CMSD redirection
• CMSD should handle the load balancing of data  

transfers through the Gateways

• Want to provide HA for the CMSD/XRootD 

 managers

• Use keepalived to provide failover  

• Client connects only through xrootd port 1094

• CMSD inter-communication on 1213

• DNS alias with two floating IPs is frontend

• Existing gateways act as redirected servers

Clustering Configuration Introduction

Configuration 27-July-2021 7

In order to make the system as flexible as possible, the manager cmsd does not
know how many or which hosts will acts as servers. For security purposes, you can
restrict hosts based on host name as well as by NIS netgroup. Thus, servers
essentially subscribe to the manager claiming that they have file resources. During
the subscription process, each server indicates the file paths to which it is willing to
provide data access. Periodically, the manager cmsd requests load information from
each server. Each server reports CPU, network I/O, queue, memory, paging load as
well as free space. This information is used to select the best available server for an
open request.

The decision is tempered whether or not the server already has the file on disk or
whether the file must be staged to disk from a Mass Storage System. The manager
may decide that all available servers are too loaded and force a file to be replicated
on a less loaded server. This provides additional data paths to the file. Replicated
load balancing is only compatible with read-only files. The manager can direct
client’s to a writable version of a files but only on servers that have indicated that
they offer write access on the associated path. In general, only one such server may
exist for each particular path.

In order to provide a fully redundant service, all servers may be replicated and
cross-connected, as full full crossbar configuration shows above.

xrootd xrootd xrootd

cmsd

Host x Host
y2

Host z

xrootd

Host
y1

cmsd cmsd cmsd

Figure 1.1.1-2: A Fully Redundant Cluster Configuration

 all.role manager all.role manager all.role server all.role server

alias.domain:1094

Floating IP Floating IPClient

1. Control

2. Redirect

3. Gateway

4. Data keepalived  
(running on the manager hosts)

http://rdr.echo.stfc.ac.uk

Updates to ECHO operations: Deletes
• Deletions performed ‘live’ against Ceph (i.e. no database / asynchronous operations)

• Moving from gridFTP to davs/root: gridFTP used a ‘python script of last-resort’ to delete files, if stuck.

• XrdCeph now includes better handling of locked files;

• ‘stub’ (0-byte) files with missing striper metadata still needs manual handling (increasingly rare).

• Proxy + Sever configuration created serialisation of delete requests from the client.

• i.e. one slow request (e.g. due to ceph operations, etc) would stall all subsequent queued requests

• Removing the proxy (e.g. the ‘unified’ config) allows deletes to be parallelised:

• Plot of recent ATLAS deletion times against 
ECHO;

• Small dependency on file size

• Concurrency appears to have stronger 
dependence

• May require further work as filesizes and 
deletion counts increase.

24

<latexit sha1_base64="pgEtys1ribSxHl8nqrDPSB70ujw=">AAAEDnicfVPPb9MwFH5L+DHKjxV25GJRQJyqpO0YB5CmcYAL0hB0m9REk+O6rVUnjmwHqYt65wj8MdwQV/4F/hYkxEuaVW0zZsv28/e+79l5L45SKYz1vN9bjnvt+o2b27cat+/cvbfTvP/g2KhMM95nSip9GlHDpUh43wor+WmqOY0jyU+i6evCf/KJayNU8tHOUh7GdJyIkWDUIqSafyGACDiMQUACOViguM9A4qphjojEXlgNZFpQkOKu8HNEcsQJPMWx3j9gtHNkXPjeoU0xPoEBGAhxDbAXEWNkDlcierV4j+ElvMLZxygCDmt+D9rQg71lTH+D4ZNdxLwr1Z2lurNkLDWl/s1/1XvliQt1t8YoTu9eod4vNQt1b4PRrW5+udpHtV/m6yKXEVbHljWKVzIa4Jxgjuu1bZw1W17bKxupG35ltKBqR2fNP8FQsSzmiWWSGjPwvdSGOdVWMMnnjSAzPKVsSsd8gGZCY27CvPxL5+QJIkMyUhpHYkmJripyGhsziyNkxtROzKavAC/1RUpNLY0MOslEaXGO4akkxZMw61eyoxdhLpI0szxhixuNMkmsIsXbIEOhObNyhgZlWuBHETahmjKLL6jIlr+Zm7px3Gn7z9u9973WwWGVt214CI/gGVZrHw7gLRxBH5gTOZ+dr84394v73f3h/lxQna1Kswtrzf31D38c3EQ=</latexit>

Size Mean [s]

0 <=1MiB 0.45
1 1–10MiB 0.42
2 10MiB–1GiB 0.51
3 1–3GiB 0.73
4 3–10GiB 1.10

Updates to ECHO operations: Checksums
• Originally (in xrootd) could only calculate checksum from the data, when requested:

• unable to read gridFTP computed checksums, due to endian-ness issues; GridFTP used the XrdCks format

• External python script now used to compute / retrieve checksum.

• Additional overhead on Gateways, as data needs to be read back from Ceph to the gateway. (x2 bytes
received in to the NIC); safe for the paranoid.

• ~ 10s / GiB for checksum computation

• Currently improving this to avoid the overhead of setup / teardown  
 of rados client connections per request:  
(important for retrieval of data from metadata). 

• Several discussions on improving further: e.g. on-the-fly  
checksumming; and (my preferred) computation at the OSD level.

• Also considering developing Checksum plugin (dev documentation?)

25

Includes gfal + lxplus RTT

<latexit sha1_base64="dmifLmXScErv2L0NPZWr0ivHCkg=">AAACpnicbVHJjtNAEG2bbTBbgCOXFhFo4BDZo7AcR8wcuIAGiSQjxVbobleSVnqxehkpWPkLfo5fgQvtjoWYGUpq6dV7VdW10EZw6/L8Z5LeuHnr9p2Du9m9+w8ePho8fjK12hsGE6aFNueUWBBcwcRxJ+C8MUAkFTCjm5NOn12AsVyrr27bQCXJSvElZ8QFajH4UVJYcdU6Qr0gZtcKs8tKpxvjBWTtDr/E+BMQhU+9iSl4Lm2FyzKb7qviLqK3wJaS1zH1xBsDykV1/CbvtFO4iG4xjm5JtXNaxugSVP23h2wxGOajPBq+DooeDFFvZ4vB77LWzMvwIRPE2nmRN65qiXGcCQgDeQsNYRuygnmAikiwVRu3t8MvAlPjpTbhhYYj+29GS6S1W0lDpCRuba9qHflfjWq9CTPZIOK1Nvx7KE8E7k5lL7fklu+rlqvGO1Bs39HSC+w07m6Ga26AObENgDDDw1CYrYkhzIUbdNsqru7mOpgejYq3o/GX8fD4Q7+3A/QMPUeHqEDv0DH6iM7QBDH0K8HJq+R1eph+TifpbB+aJn3OU3TJ0m9/AFOOyr0=</latexit>

Mean Duration [ms]
Version

Current 450
Dev 140

