
To the OSPool and Beyond:
The guts of the OSDF client

Brian Bockelman
XRootD Workshop, March 2023

The Open Science Data Federation (OSDF)

• The OSDF aims to help researchers move
objects to and from computation in
support of open science.
• The OSDF provides:
• The origin service, which integrates an

existing object store or filesystem into the
OSDF.
• A redirector, helping clients to find the

objects.
• A set of distributed caches for scalable data

distributions.
• A client for accessing objects from jobs.

Why OSDF?
By connecting to the OSDF, the filesystem / object store owner can distribute their
objects in a scalable, reliable manner with a consistent authorization scheme.

OSDF “at a Glance”
During February,

What’s needed in a client?

1. Invoke: The client determines work to be done.
2. Authorize: Acquire the credentials necessary for each transfer.
3. Discover: For each transfer, find an appropriate endpoint to do the

work.
• Not all caches are willing to serve the entire namespace.
• Some transfers are directly with origins (uploads).

4. Transfer: Actually attempt the data upload / download.
5. Repeat! (If needed on errors)

The OSDF Client: Invoke

• The client has two binaries,
• stashcp: A `cp` like interface.

Intended to be invoked by users at
the CLI.

• stash_plugin: A HTCondor file
transfer plugin.

• `stashcp` has user-friendly features
like progress bar, transfer
resumption, recursive downloads.

• `stash_plugin` provides structured
output and error messages about
transfer results.

• Implementation is in go; everything
is in a self-contained, statically-
linked binary.

Works on Windows, Mac, and Linux!

The OSDF Client: Authorize

• The client will download the list of namespaces from the OSG
topology service and determine if any transfers need a token for
authorization.
• If a token is needed, it will:
• Look first in the environment ($BEARER_TOKEN, $BEARER_TOKEN_FILE)
• Look in the encrypted client configuration for a usable token.
• Try to generate a token if none are found.

The OSDF Client: Authorize
• If no token is found:
• Invoke an API to determine if there’s a token issuer associated with the URL.
• Refresh the token if a refresh token is present.
• Do an automated OAuth2 client registration with the issuer if no client

available.
• Perform device flow code to get a new access token and refresh token.

• All is saved in an encrypted file on disk. Decryption password is saved
in the kernel keyring for the duration of the session.

The OSDF Client: Authorize

Cache Discovery - Today

• This is where the amalgam of functionality is quite
apparent:

1. Invoke an API to get the (unordered) set of caches willing to
serve the namespace.

2. Invoke a second API – based on the WLCG WPAD / GeoIP
service to get the list of closest caches.

3. Compute intersection of the set (1) and the list (2) to get
the final list.

• Problems:
• Steps (1) and (2) are run by different teams and the cache list

gets out of sync.
• Logic is all client-side – any updates to the cache discovery

algorithm requires a new client release!
• At no point does this consider actual cache status. A cache

that is down or overloaded may be first on the list.

OSG Topology
API (1)

WLCG WPAD
API (2)

Client (3)

Cache Discovery – “Tomorrow”

• Services in OSDF advertise to a central
collector.
• Manager webapp periodically queries the

collector to build the topology of the
OSDF namespace.
• Client sends a GET to the manager, is

redirected to the nearest cache (HTTP
307).
• Redirect headers also contain alternate

sources.
• Will also contain the information on the

token issuer for this base path.

Manager API

Client (3)

Collector
GeoIP DB

Cache Cache

Cache

Origin

Query Query

Advertise

GET /ospool/FOO

Cache Discovery – “Tomorrow”
> GET /osgconnect/public/osg/testfile.txt HTTP/2
> Host: osdf-cache-manager.osgdev.chtc.io
> user-agent: curl/7.86.0
> accept: */*
>

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 27 Mar 2023 13:06:14 GMT
< link: <stash.farm.particle.cz:8000>; rel="duplicate"; pri=1,

<ds-914.cr.cnaf.infn.it:8000>; rel="duplicate"; pri=2,
<fiona-r-uva.vlan7.uvalight.net:8000>; rel="duplicate"; pri=3,
<stashcache.edi.scotgrid.ac.uk:8000>; rel="duplicate"; pri=4,
<xcachevirgo.pic.es:8000>; rel="duplicate"; pri=5, ...

< location: http://stash.farm.particle.cz:8000/osgconnect/public/osg/testfile.txt

Transfer (and Repeat)

• This is the easy part – after the “cache discovery”, one has a HTTP
URL.
• The clients simply invoke $YOUR_FAVORITE_HTTP_CLIENT.
• The one we’ve chosen has a few niceties – download resumption.

• On failure, we walk down the list of sources and retry up to 3 times.
• Clients will pipeline up to 5 transfers in parallel.

Active threads & Future Activities

• We want the clients to be usable by anyone. Particularly, this means
error messages must be “human optimized” not “developer
optimized”.
• This is not just ‘write better error messages’ in the client but also ‘change

XRootD to provide better error messages’.

• Clients discussed have all been command line. To really capture
“normal users”, we need browser-based clients.
• Goal is to allow uploads/downloads from laptop through the browser; no

standalone software download needed.

Thanks!
This project is supported by National Science Foundation under Cooperative
Agreement OAC-2030508. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

