
XCache experience
Virtual Placement
(and ServiceX)

Ilija Vukotic
US ATLAS Computing Facilities @SLAC F2F
2022-12-01

ATLAS Distributed Data Management

Almost all of our data in Rucio (exception are some
unregistered datasets in CERN EOS).

Data placement/movement governed by Rucio rules and
available disk space.

Jobs go where the data is (except - Panda can move the
data by creating temporary replicas).

That all works, specially for large workloads - MC
generation, reprocessing campaigns, etc.

2

ATLAS Distributed Data Management

But could be better…

● No natural way to support hot/cold storages

● Temporary replicas:
○ Add latency as it involves Rucio and FTS, jobs can’t start until all files have

been transferred

○ A lot of bandwidth is needed

○ Further reduce average number of accesses per file (coldness)

● Doesn’t allow for “storage-less” sites

● Impractical for quick turnaround, low available bandwidth,

preemptable queue use cases:
○ Analysis facilities (ServiceX, Coffea, Coffea-casa,..)

○ Cloud resources, HPCs 3

What is Virtual Placement?

VP is a mechanism that enables efficient and
reliable data access over WAN.

Expected benefits:

● Enables storageless sites
● Less WAN bandwidth usage
● Less rescheduling
● Faster task turnaround
● Less replicas

4

Components - Origins

● Origins are all active ATLAS DDM endpoints.

● All origins should have a working xroot endpoint.

● If dual stacked it has to serve on both IPv4 and

IPv6.

● If an endpoint is inaccessible it has to be set as

being offline.

● This is a requirement for other reasons too (eg.

ServiceX) 5

Components - XCache

● Each site using VP needs one or preferably more XCache
nodes.

● Nodes are equipped with JBODs (10-100TB) and a decent
NIC.

● Runs xrootd but no cmsd, nodes are not federated
● Caches only blocks that are required.
● Each block is checksummed and retransfered if corrupted.
● Nodes send heartbeats every 10s.
● All nodes are centrally monitored, all details of all the

accesses are logged.

6

Components - Panda

● To send a job to a queue, Panda requires an

input data replica already present at the site.

● VP creates dataset Virtual Replicas, that are

permanently fixed to 3 VP DDM endpoints.

● Panda will use Virtual Replicas only if regular

replicas can’t be used (DDM endpoint or Site is

down, regular queues are too busy).
7

Components - VP/Rucio

● Knows which xcache site(s) serve which ATLAS site(s)

● Keeps track of live XCaches

● Calculates probabilities to create VP replicas

● “remembers” virtual replicas

● Uses Rendezvous hashing to decide which XCache

node of the XCache site will be used for each

individual access.

8

https://en.wikipedia.org/wiki/Rendezvous_hashing

9

Site A

VP Panda Queue XCache

XCache

XCache

Site B

DDM

Site C

DDM

Panda
Task
Input DS

Rucio/VP
DB table

replicas

1

3

2

4

6
5

0 0
Each XCache node sends
heartbeats to Rucio
It tells is:

● which XCache site it
belongs

● how much space it
has

● what IP:port it serves
on.

Admin

0.5

0.5

Rucio Admin configures
which XCache site serves
which ATLAS site.

1
User submits a task to
process a dataset

2
Panda asks Rucio for:

● regular DS replicas
● VP replicas

If there is an active regular
replica with at a working
site, it sends jobs there.

3
Panda

If no good options to
process regular replicas, it
sends jobs to a first
working VP queue with a
virtual replica.

4
Pilot

Pilot data mover asks
Rucio where to get the
input files from.
Rucio calculates where is
the closest real replica,
and which of the xcache
nodes should serve that
file. Returns a full file
access path.
If the user requested
copy2scratch it does so.

5
Job

Opens file(s), requests
branches.
In most cases data will
already be available in the
xcache, so access will be
very fast.

6
Job

If a file was not accessed
before or user now has
different selection, parts of
the file missing in xcache
gets transferred from real
replica, delivered to the
job, and stored in the
xcache.

10

What is ServiceX?

ServiceX aims to provide nearly interactive
filtering, enrichment, transformation of very large
datasets and result delivery in multiple formats,
with emphasis on pythonic style analysis.

https://arxiv.org/pdf/2107.01789.pdf

ServiceX - k8s

XCache in ServiceX

XCache

S3 storage

Rucio

ServiceX

Frontend

Transformer

Transformer

Transformer

Transformer

Transformer

User

DID finder
PostgreSQL

RMQ

x509

DDM endpoint

DDM endpoint

DDM endpoint

DDM endpoint

DDM endpoint

1

3

2
4

6
5

8
7

1

User submits a request
using servicex client.

Code generator

2

ServiceX asks DID
Finder to find paths to
input files.
Creates code to do
transformation.
Creates transformer
pods.

3

Rucio returns paths to
all input files. If there is
an xcache, it gets
prepended.

4

Input data file paths
are added to an
internal RMQ for
processing.

5

Transformer pods pick
up files, to be
processed. Their
numbers autoscale if
needed up to 750
cores per request.

6

Transformers access
data from grid DDM
endpoints using
xrootd, or CERN Open
Data using http.

7

Transformers send
filtered data to any
kind of S3 compatible
storage. Each request
gets a basket and
each input file creates
one object.

8

ServiceX client code
reads (and caches
locally) results from the
object store, gives it to
users code.

Data traffic reduction
~10TB to ~50GB

I. DS size 100%
II. To XCache: 10-20%
III. From XCache: 90%
IV. To S3 and client: 5%

11

Requirements on XCache in ServiceX

12

● Must sustain thousands of concurrent writes/reads mostly
in small files.

● Storage
○ performance - must be top of the line - all nVME storage.
○ Size - roughly one month of turnover time.

● At least 40Gbps NIC(s).
● Access to HTTP data too.

○ We added xrdcl-http plugin that allows access to CERN open data
and data at certain Tier3s that don’t have xrootd doors.

○ Paths like: root://xcache.xxx.org//http://origin.xxx.org

13

Experience with XCache

● Image building
● Deployment
● Registration
● Monitoring
● Stability and performance of XCaches
● Stability and performance of the whole system
● Issues

Image building

14

● The original idea was for OSG to build and test images for

everyone.

● Have a base image, and on top of that ATLAS, CMS, Stashcache

could add things to address specific needs (code here).

● Despite several merge attempts, we (ATLAS) are constantly out of

sync. Mainly due to me being constantly overcommitted. But also

due to me doing frequent tweaks.

● We build in GitOps and push images both to DockerHub and OSG

Harbor.

https://github.com/opensciencegrid/docker-xcache

Image building - ATLAS specifics

15

● Configuration:
○ Limits (file descriptors, processes)
○ Monitoring configuration
○ Block size, prefetch
○ Xrdcl-http plugin

● gStream2tcp - for our gStream monitoring
● Extra monitoring

○ Reports CPU utilization, memory, all disks activity, network ingress/egress,
etc.

● Heartbeats sending
○ To VP service
○ To Rucio, using Rucio API.

● Dark data cleaning
○ Done once before server starts. Cleans data without cinfo files, cinfo files

without data, empty directories, etc.
● Docker compose deployment.

16

Deployment options

Three different ways to setup XCache:

● Very easy - install k8s, install SLATE, fedOps team installs and
manages xcache.

● Easy - install docker-compose, use provided template to configure and
start service. When informed that an upgrade is needed, simply restart
it.

● Not hard - install xcache, setup two cron jobs. When asked update
things.

We update certificate on all xcache nodes once per year. These
use special service certificate.

17

Deployments on SLATE

XCache application in SLATE is a regular HELM chart with just a few

additional fields.

Deployment/update of the application on SLATE site takes ~1 minute and

is completely transparent for the site admins.

Restart of node or even cluster update are transparent to me as XCache

network administrator.

SLATE XCache instance have their helm configuration values in a github

repository, and I can update settings by a simple push as FluxCD will

redeploy the edited instance.

18

Deployments - XCache hardware

● It can (and often does) use older hardware.

○ eg. Prague - node with 89, 1TB disks.

● While NVMe is prefered, HDDs work OK (the more spindles the

better).

● Optimally three independent nodes, but even a single instance

setup works well as XCache is now much more stable than

before.

Registration

I need a low latency between xcache going up/down and rucio

knowing about it.

All XCache instances have been removed from OSG Topology and

ATLAS-Crick (latency at least 30 min).

XCaches send heartbeats every 10 seconds to VP informing it

about: instance name, xcache site, total disk size, IP address and

port. Three missed heartbeats and the instance is unregistered.

Rucio keeps a map of which ATLAS site is served by which XCache

site.
19

20

Monitoring I

Main monitoring is gStream based.

Each XCache instance is a k8s pod with

one of the containers responsible for

monitoring.

Runs gStream2tcp, simple python code

that receives UDP packets, decodes

them, repacks info into JSON

documents, sends them to a logstash

instance running at UC River cluster,

which indexes it in UC Elasticsearch.

All details of each access to each file

are preserved.

21

Monitoring II

SLATE deployed hosts run a code that

periodically report CPU usage,

utilization, network Ingress/Egress, etc.

While interesting, it isn’t really

actionable.

Monitoring III

22

● There are two kinds of ATLAS jobs: direct access and copy2scratch

○ Direct access - pilot tests that it can access each input file before

letting the job start.

○ copy2scratch - pilot uses rucio mover to pre-fetch data to scratch.

● Both methods report full information about each file access to Rucio

traces.

● Rucio traces are also indexed at UC Elasticsearch.

● Useful to find issues with origins.

● A lot of issues are temporary (origin busy, slow, temporarily

inaccessible). I run continuous “recheck code” that retries failed

transfers.

Monitoring IV

23

It happens from time to time that xcache is sending heartbeats,

delivering cached data, part of the jobs is succeeding, but xcache can’t

access any outside data.

External tester:

● Creates and registers a new Rucio dataset every night with 288

unique 1kb files.

● Every 5 min accesses a new file through each of the supposedly

live xcaches, raises alarm if needed.

● Doesn’t work with xcaches exposed only on a site local network.

24

Stability and performance of XCache

XCache stability is now very high.

I don’t see any crashes or unexplained restarts.

The biggest issue is unreliable hardware. With nodes of 30+ spinning disks

that are all out of warranty, it too often happens that the disk dies, then nodes

is left hanging. This requires admin intervention to identify failed disk, make a

github PR to remove the disk.

Performance of systems with SSDs is always great. One node can easily serve

at least 3k worker nodes. A single node xcache with HDDs can easily be

pushed to show data bypass.

Performance of cached HTTP accesses is still not tested at sufficient scale

25

Stability of Virtual Placement system

Designed to gracefully handle failures so all the fixes can wait for

Monday morning.

● If a disk fails, only some small number of jobs will failover to

origin.

● If an xcache node goes down it gets removed from rotation in

30s. Minimally affects number of cache hits.

● If all xcache nodes at the site go down, jobs get data directly

from origin.

● If whole of VP goes down, current jobs will finish and new ones

won’t be submitted.

Issues

26

● Caches that partially work (eg. bad disk, incapable of getting origin data

but capable of serving cached data, etc.) I would prefer them self-

repairing or even shutting down

● Not everyone wants a SLATE deployment. It is easier to handle 10

remotely managed sites than a single “proxy” managed one.

● Bad origins (eg. site has xrootd door registered and set active when it is

not so, too slow transfers)

● Issues with our WFMS

○ allowing users to demand copy2scratch

○ allowing users to avoid VP brokering

○ bad error reporting from Pilot.

Plans

27

● Test single site scaling. Now being done at BNL at 2500 cores, but can

probably go significantly higher.

● Test at HPC site. Currently done on NERSC PerlMutter. A whole other set

of configuration issues to solve.

● Compare performance of xrootd and http origins.

● Compare performance of xcache http and other http caching options

(NGINX, Apache Traffic Service)

● Finish VP Rucio integration.

