


Michal Simon

What's up with the XRootD

client

29/03/2023

Michal Simon



Michal Simon

Outline

• xrdcp primer

• Declarative API

• Lifting File API limitations

• Record & replay

29/03/2023



Michal Simon

xrdcp primer: TLS support

• Triggering TLS with roots://

• Encrypting only the control channel

• Backwards compatibility with old servers

• Use encryption with metalinks

29/03/2023



Michal Simon

xrdcp primer: ZIP archives

• Copy file from a ZIP archive

• Append file into a ZIP archive

• Use checksum from the Metalink

29/03/2023



Michal Simon

xrdcp primer: continue & retry

• Continue timed out transfer

• Retry errors

• Retry + force

• Retry + continue

29/03/2023



Michal Simon

xrdcp primer: transfer rate

• Limit the maximum transfer rate

• Ensure the transfer rate does not drop below given 

threshold

29/03/2023



Michal Simon

xrdcp primer: miscellaneus

• Support two checksums

• Cleanup the file on bad checksum

• Multiple sources (extreme copy)

• Preserve extended attributes

29/03/2023



Michal Simon

Declarative API: Motivation

29/03/2023

• Use case: erasure coding plug-in for EOS

• Executing multiple operations on multiple remote

files (stripes) in parallel

• Problem with asynchronous operation composability 

and code readability

• Asynchronous Open() + Write() + Close() in 

the code is only visible as an Open() (rest of the 

workflow is in the callbacks)



Michal Simon

Declarative API: case study

29/03/2023

We would like to implement a ECWrite() method based on 

XRootD client API

• Write one block striped to n data chunks and m parity 

chunks



Michal Simon

Declarative API: case study

29/03/2023

• We need to open all stripes, write to all stripes, set 

extended attributes on all stripes (e.g. checksum), 

close all stripes

• Ideally, for performance we would like to use only 

asynchronous APIs

• The write operation and setting extended attributes

should be done in parallel



Michal Simon

Declarative API: case study

Update of a single stripe/chunk with standard XrdCl API ...

29/03/2023



Michal Simon

Declarative API: case study

… also all this boilerplate code is needed!

29/03/2023



Michal Simon

Declarative API: case study

What do we have so far:

• We updated only one chunk

• Write and SetXAttr happen sequentially (we would 

need yet another handler-class to aggregate the result 

of parallel execution)

• The amount of boilerplait code is SIGNIFICANT!!!

• To update all data stripes and parity stripes we will need 

yet another handler-class to cope with parallel 

execution

• The boilerplait code is very repetitive!

29/03/2023



Michal Simon

Declarative API: case study

We extracted the repeating patterns, applied significant 

amount of template meta-programming and got a new 

declarative API:

• Asynchronous operation composability

• Code readability

• Clear workflow

• In line with modern c++ (ranges v3 inspired, 

support for lambdas, std::futures)

• Released in 4.9.0 but more complete set of features 

available only in 5.0.0

29/03/2023



Michal Simon

Declarative API

29/03/2023



Michal Simon

Declarative API

29/03/2023



Michal Simon

Declarative API

29/03/2023



Michal Simon

Declarative API

29/03/2023



Michal Simon

Declarative API

29/03/2023



Michal Simon

Declarative API

29/03/2023



Michal Simon

Declarative API

29/03/2023



Michal Simon

Declarative API

29/03/2023



Michal Simon

Declarative API

29/03/2023



Michal Simon

Limitations of XrdCl::File: #1

• In order to handle internal state the XrdCl::File uses an 

internal FileStateHandler object that is being called 

whenever a async operation completes

• As the FileStateHandler needs to exist at the moment a 

response arrives, hence XrdCl::File object MUST NOT

be destroyed if there are any requests in-the-flight

29/03/2023



Michal Simon

Limitations of XrdCl::File: #1

29/03/2023



Michal Simon

Limitations of XrdCl::File: #1

29/03/2023



Michal Simon

Limitations of XrdCl::File: #1

29/03/2023



Michal Simon

Limitations of XrdCl::File: #1

29/03/2023



Michal Simon

Limitations of XrdCl::File: #2, part 1

• All synchronous operations are implemented in terms of 

asynchronous operations

• By providing a completion handler that syncs issuing 

the request with receiving the response using a 

semaphore

• All completion handlers are called in the (fixed size) 

thread-pool

29/03/2023



Michal Simon

Limitations of XrdCl::File: #2, part 2

• One MUST NOT mix synchronous operations with 

asynchronous ones

• Consider following example:

• We have a thread-pool of 4 threads

• We issue 4 asynchronous opens

• In the completion handlers we issue 4 

synchronous closes

• This will deadlock the whole thread-pool: each 

worker thread will wait on a semaphore that will 

be only posted when a worker thread is available

• Use declarative API to chain operations!!!

29/03/2023



Michal Simon

Limitations of XrdCl::File: #2

29/03/2023



Michal Simon

Limitations of XrdCl::File: #3

• The XrdCl::File destructor will issue a Close request

• The Close has to be synchronous

• As discussed in #1 the XrdCl::File object 

MUST exist when the response comes back

• Hence we recommend to always do an async close 

before destroying the XrdCl::File object

29/03/2023



Michal Simon

Can we do better?

• Can we work around

limitation #1 and #3?

• Both are really error 

prone!!!

• If only the this pointer 

would be reference 

counted!!!

29/03/2023



Michal Simon

Let's be more Pythonic :-)

• Chage the implementation from:

to:

29/03/2023



Michal Simon

Let's be more Pythonic :-)

• This required quite some refactoring but now this works:

Limitation #1 is

lifted!

29/03/2023



Michal Simon

Let's be more Pythonic :-)

• With limitation #1 being removed we can replace the 

synchronous call to Close in XrdCl::File destructor with

an asynchronous call and hence lift limitation #3

• To summarize, starting with 5.5.0:

• It is OK to issue an async request and then 

immediately destroy the XrdCl::File object (also true 

for the XrdCl::FileSystem object)

• It is OK to destroy the XrdCl::File object in a 

completion handler without previously closing it

29/03/2023



Michal Simon

Record & replay: motivation

• Allow to emulate real applications without running 

complex runtime environments

• Facilitate benchmarking and debugging of storage 

systems

• Based on two components:

• Recorder plugin: records all client actions in a CSV file

• One can load the plugin into any ‘black-box’ 

application that use XRootD client without modifying 

the source code

• Replay tool: replay all client actions

• Preserving original timing

429/03/2023



Michal Simon

Recorder plug-in

• Available in xrootd-client-recorder sub-package

• In order to accommodate older XRootD4 clients we also 

provide a back-ported version as a separate package

• Released in 5.5.0

• Example configuration file:

407/03/2022



Michal Simon

Recorder plug-in

• User’s actions are stored using CSV file format

• We do support quoting so it is safe to use comas in URL 

opaque info

• By default the file is stored at: /tmp/xrdrecord.csv

• This can be overwritten either in the config file using the 

output key, or

• Using an environment variable: XRD_RECORDERPATH

• Introduces only minimal or no overhead

407/03/2022



Michal Simon

Replay tool

• To replay the registered actions:

xrdreplay /tmp/xrdrecord.csv

• Alternatively one can do the replay from stdin (e.g. if the CSV 

needs to be unzipped):

cat /tmp/xrdrecord.csv | xrdreplay

• There are 4 operational modes:

• Print mode: display runtime and IO statistics for given CSV

• Verify mode: verify that the required input files exist

• Creation mode: create required input data

• Playback (default): replay given CSV

407/03/2022



Michal Simon

Replay tool: print mode

• To display statistics from recorded I/O pattern without replaying 

do:

• To further inspect details of the recording use long format (-l) 

and/or the summary option (-s)

407/03/2022



Michal Simon

Replay tool: verify mode

• To verify availability of all input files do:

• On success the shell return code is 0, if there was a missing, 

too small, or inaccessible file the shell return code is 251.

407/03/2022



Michal Simon

Replay tool: creation mode

• Creates the required input files

• -c create files reassembling the original

• -t create and truncate the file to the required size (will 

contain 0s)

• --replace option allows to modify the input and output path 

used by xrdreplay

• Can be used multiple times to overwrite multiple URLs

407/03/2022



Michal Simon

Replay tool: playback mode

• Without print, verify or create xrdreplay will replay the 

recorded pattern

• It will try to preserve the original timings (this might not 

be possible if responses are significantly slower)

• The –x option allows to tune the replay speed

• After replaying the pattern a summary is given

407/03/2022



Michal Simon

Summary

• Don't be afraid of async APIs

• Declarative API makes it much easier and readable

• The File object no longer needs to outlive the completion 

handlers

• Record / replay is great for debugging and benchmarking

storage systems

• There is lots of functionalities build into the xrdcp tool

• Be sure to know its capabilities before enhancing it with 

scripts

407/03/2022


