
Evolution of
Testing and CI Infrastructure

G. Amadio XRootD Workshop Ljubljana, Slovenia 29 Mar 2023

XRootD/EOS are of critical importance to CERN/HEP

▶ Need to provide rock solid stability

▶ One of the pillars upon which EOS is built

● EOS will reach over 750 PB of data across instances at CERN in 2023

▶ XRootD protocol used by many physicists (with ROOT) for their analysis

▶ Scale: many thousands of clients active at any given moment

▶ Data volume will increase by 10x with HL-LHC, we need to be ready for it

▶ Goal: evolve testing infrastructure to find as many problems/bugs as possible

before they reach any production environment

2

GitHub Actions vs GitLab CI

3

Recent Developments

▶ Linux distribution recommendation changed from CentOS Stream to Alma

● Added builds on Alma Linux 8 and Alma Linux 9 to XRootD GitHub Actions

● Adapted docker based tests to work on Alma 8 and Alma 9 in addition to CentOS 7

▶ Added a build on Alpine Linux (musl-based Linux distribution)

▶ Dropped build on Ubuntu 18 (not supported anymore)

● CMake is too old (3.15), we now require CMake 3.16 or newer (due to FindPython.cmake)

▶ Moved Fedora 35 build to Fedora 37

▶ Removed branch filters, now CI runs on all branches and pull requests

▶ Planned: builds with clang on Linux, static analysis with clang-tidy, coverage

4

Static Analysis Example (clang-tidy)
xrootd/src/XrdCl/XrdClFile.cc:236:19: warning: Access to field 'length' results in a dereference
 of a null pointer (loaded from variable 'chunkInfo') [clang-analyzer-core.NullDereference]
 bytesRead = chunkInfo->length;
 ^~~~~~~~~
xrootd/src/XrdCl/XrdClFile.cc:229:5: note: Taking false branch
 if(!st.IsOK())
 ^
xrootd/src/XrdCl/XrdClFile.cc:232:5: note: 'chunkInfo' initialized to a null pointer value
 ChunkInfo *chunkInfo = 0;
 ^~~~~~~~~~~~~~~~~~~~
xrootd/src/XrdCl/XrdClFile.cc:233:27: note: Calling 'MessageUtils::WaitForResponse'
 XRootDStatus status = MessageUtils::WaitForResponse(&handler, chunkInfo);
 ^~~~
xrootd/src/./XrdCl/XrdClMessageUtils.hh:179:9: note: Taking false branch
 if(ret.IsOK())
 ^
xrootd/src/./XrdCl/XrdClMessageUtils.hh:191:9: note: Returning without writing to 'response'
 return ret;
 ^
xrootd/src/XrdCl/XrdClFile.cc:233:27: note: Returning from 'MessageUtils::WaitForResponse'
 XRootDStatus status = MessageUtils::WaitForResponse(&handler, chunkInfo);
 ^~~~
xrootd/src/XrdCl/XrdClFile.cc:234:5: note: Taking true branch
 if(status.IsOK())
 ^
src/XrdCl/XrdClFile.cc:236:19:
 note: Access to field 'length' results in a dereference of a null pointer (loaded from variable 'chunkInfo')
 bytesRead = chunkInfo->length;
 ^~~~~~~~~

5

GitHub Problem Matchers

6

Docker Tests

▶ Existing tests in repository on GitLab
● https://gitlab.cern.ch/eos/xrootd-docker

▶ Converted this setup into xrd-docker script
● Subcommands

◾ fetch - download data
◾ package - create XRootD tarball
◾ build - build docker images
◾ setup - setup containers
◾ run - run tests
◾ clean - clean up running containers and drop testing network

● Pull request with latest version: https://github.com/xrootd/xrootd/pull/1974

▶ Operating Systems: CentOS 7, Alma 8, Alma 9
▶ Planned to be included in XRootD 5.6 release

7

https://gitlab.cern.ch/eos/xrootd-docker
https://github.com/xrootd/xrootd/pull/1974

XRootD Docker Testing Setup

8

metaman

man1 man2

srv1 srv2 srv3 srv4

Testing with CMake/CTest

▶ Tests need to be easy to run

▶ No special knowledge should be required

▶ Gives confidence to external contributors
that they are not breaking anything when
making changes to the code

▶ Everyone knows the “standard” workflows

● Autotools

◾ configure && make && make test

▶ Provide similar experience with CMake

● cmake && make && ctest

9

$ cat tests/XrdCl/CMakeLists.txt

add_executable(xrdcl-unit-tests
 XrdClURL.cc
)

target_link_libraries(xrdcl-unit-tests
 XrdCl
 XrdXml
 XrdUtils
 GTest::GTest
 GTest::Main
)

target_include_directories(xrdcl-unit-tests
 PRIVATE ${CMAKE_SOURCE_DIR}/src
)

gtest_discover_tests(xrdcl-unit-tests TEST_PREFIX XrdCl::)

Testing with CMake/CTest

▶ Tests need to be easy to run

▶ No special knowledge should be required

▶ Gives confidence to external contributors
that they are not breaking anything when
making changes to the code

▶ Everyone knows the “standard” workflows

● Autotools

◾ configure && make && make test

▶ Provide similar experience with CMake

● cmake && make && ctest

10

$ cmake -S xrootd -B xrootd_build
-- The C compiler identification is GNU 12.2.1
-- The CXX compiler identification is GNU 12.2.1
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: /usr/lib/ccache/bin/cc - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
. . .
-- Build files have been written to: xrootd_build

$ cmake --build xrootd_build --parallel $(nproc)
[I] src/XrdVersion.hh successfully generated
[0%] Built target XrdVersion.hh
[0%] Building CXX object . . .
. . .
$ ctest
Test project xrootd_build
 Start 1: XrdCl::URLTest.LocalURLs
1/6 Test #1: XrdCl::URLTest.LocalURLs Passed 0.01 sec
 Start 2: XrdCl::URLTest.RemoteURLs
2/6 Test #2: XrdCl::URLTest.RemoteURLs Passed 0.16 sec
 Start 3: XrdCl::URLTest.InvalidURLs
. . .
 Start 6: XrdCl::Utils
6/6 Test #6: XrdCl::Utils Passed 8.01 sec

100% tests passed, 0 tests failed out of 6

Total Test time (real) = 13.23 sec

Supported Platforms

11

▶ Which platforms and compilers should we support?
● Currently, we officially support CentOS 7, Alma 8, Alma 9, Ubuntu, and macOS
● GitHub Actions now also covers Alpine Linux (due to recently added musl libc support)

▶ Supporting more compilers can be beneficial
● More opportunity to find bugs via compiler warnings
● Be more resilient against compiler-specific features/bugs
● More tools to apply in development (e.g. clang-tidy, clang-format)

▶ Clang on Linux not currently supported, maybe good to add
▶ What hardware architectures to support?

● No explicit support for anything other than x86_64 and arm64 (macOS)
● Do our users run XRootD on unsupported architectures like PowerPC?
● Plan to add other architectures via qemu to GitHub Actions (at least arm/arm64)

