
XRootD
pgRead & pgWrite

XRootD Workshop
March 29-31, 2023

Andrew Hanushevsky, SLAC
http://xrootd.org

XRootD Workshop @ JSI 2March 27-31 2023

Page read/write (pgRead/pgWrite)

These are page aligned reads/writes

◼ 4K pages on 4K boundaries

◼ Does allow misalignment for 1st page (later)

◼ Each page is check summed using crc32c

◼ Follows IETF RFC 7143 standard

◼ Client/server perform on-the-fly correction

◼ Reads: client rereads pages in error

◼ Writes: server supplies pages in error to rewrite

XRootD Workshop @ JSI 3March 27-31 2023

Why page read/write

Transmission errors do occur

◼ Some not caught by the TCP 16 bit checksum

◼ Reports of errors on some international links

◼ Typically during high usage periods

◼ Avoids retransmission of large files (> 10GB)

◼ When only a few bits are corrupted

◼ Avoids having sticky errors in Xcache

◼ A serious concern in a long-lived page cache

XRootD Workshop @ JSI 4March 27-31 2023

Wire layout

crc32c 4096 data bytes (1 page) crc32c 2048 data bytes

Offset 0 Offset 4096

Read/write 6144 bytes at offset 0 (page aligned - typical xrdcp, Xcache)

Read/write 8000 bytes at offset 2040 (non-page aligned - typical random I/O)

crc32c 2056 data bytes crc32c 1848 data bytes

Offset 2040 Offset 8192

crc32c 4096 data bytes (1 page)

Offset 4096

Read/write 4000 bytes at offset 2040 (non-page aligned – degenerate case)

crc32c 2056 data bytes crc32c 1944 data bytes

Offset 2040 Offset 4096

XRootD Workshop @ JSI 5March 27-31 2023

Special Server Response

Page Read/Write use a new response type

◼ kXR_status

◼ Response header is check summed using crc32c
◼ Also provides extended contextual data

• Minimizes need for client to maintain state

◼ Response data is check summed using crc32c
◼ For pgWrite final response data lists pages in error

• Client should retransmit these pages

◼ Server maintains list of uncorrected pages

• Maximum of 256 pages may be left uncorrected

XRootD Workshop @ JSI 6March 27-31 2023

Page read/write sync vs. async

Checksum processing restricts I/O size

◼ Sync: 2,093,056 max bytes per I/O seg

◼ Accounts for checksum overhead
◼ Data + checksums ~= 2 MB (max default buffer size)

• 2093056/4096 = 511

• 511*4+2093056 = 2095100

• 52 bytes shy of 2MB

◼ Async: 64K per I/O segment

◼ Sweet spot to minimize latency

◼ Values cannot be adjusted

XRootD Workshop @ JSI 7March 27-31 2023

Final Notes on Async I/O

Async only enabled for networked devices

◼ Linux async I/O useless for locally attached disk

◼ Implemented at user level via threads

May change with new io_uring interface

◼ Available since Linux Kernel version 5.1

◼ RH 8.7 uses 4.18

◼ RH 9.1 uses 5.14 (yay!)

Adoption rates push this 1 to 2 years hence

XRootD Workshop @ JSI 8March 27-31 2023

FAQ I

Why crc32c?

◼ Excellent for bit error detection

◼ Random not systematic (i.e. hacked data)
◼ Systematic detection needs a cryptographic checksum

◼ Hardware assisted (Intel & AMD)

◼ Can compute checksum up to 8 bytes/cycle
◼ Note ARM implements CRC32

◼ Used by modern (and not so modern) systems

◼ iSCSI, gcs, Btrfs, ext4, Ceph, among others

XRootD Workshop @ JSI 9March 27-31 2023

FAQ II

Why 4K page size?

◼ Good fit for crc32c to maximize error detection

◼ Good for transitive checksum processing

◼ Specific to XrdOssCsi plug-in
◼ Provides checksum protection for data on disk (like zfs)

◼ Avoids having to recalculate checksum

◼ Good page size for disk based files

◼ Chosen to avoid page size zoo

◼ Would be a mess if multiple page sizes allowed

XRootD Workshop @ JSI 10March 27-31 2023

FAQ III

What if a server doesn’t support pgXXX?

◼ Client reverts to using TLS if possible

◼ TLS closes the connection upon checksum error

◼ Client can recover at this point
◼ For reads, reconnects and rereads

◼ For writes, reconnects and rewrites

• But must rewrite more data than needed

◼ If TLS not available, uses normal read/write

◼ This is configurable for Xcache
◼ See the pfc.cschk directive

XRootD Workshop @ JSI 11March 27-31 2023

FAQ IV

What happens if file closed with errors?

◼ If client has not corrected all errors upon close

◼ Server writes to log that the file is corrupted

◼ The close fails
◼ Assumption is that client will use POSC upon open()

• Since the close failed the file gets deleted

◼ We are still looking for enhancement suggestions
◼ What would be a better approach w/o duplication?

XRootD Workshop @ JSI 12March 27-31 2023

FAQ V

Why 64K async size?
◼ Minimize store/Forward effect in proxy servers

◼ This also includes Xcache
Client

Read 1MB
Respond 1MB

Proxy
Read 1MB
Send 1MB

Data Server
Send 1MBT x T y

Total T x+y

Client
Read 1MB

Respond 1MB

Proxy
Read 64KB*16
Send 64KB*16

Data Server
Send 64KB*16T x T y

Total T (x+y)/16

Chunking a read keeps the pipe full
◼ Almost streaming but at a lower CPU cost

◼ Aggregate performance can be achieved

XRootD Workshop @ JSI 13March 27-31 2023

FAQ VI

Why is async size not configurable?

◼ Addition of checksum complicates things

◼ Non-standard buffer sizes create headaches
◼ Sometimes need to be oddly aligned

◼ Sometimes not fully utilized

◼ Since 64K is the WAN sweet spot

◼ We decided to standardize on that size
◼ Note TLS is already standardized on this buffer size

• No one seems to be complaining about that

XRootD Workshop @ JSI 14March 27-31 2023

Conclusion

XRootD pgRead/Write is a game changer

◼ Provides integrity for data in motion

◼ Low cost for computation & recoverability

◼ Integrated with integrity for data at rest (XrdOssCsi)

Our core partners

◼

Community & funding partners (not a complete list)

◼

Funding from US Department of Energy contract DE-AC02-76SF00515 with Stanford
University

