
Michal Simon

XrdEc:

the whole story

Michal Simon

30/03/2023 1

Introduction

• XrdEc a high performance scalable EC-based file storage module motivated

by the ALICE O2 use case.

• Originally developed for EOS and afterwards extended to work with any type

of XRootD backend storage

30/03/2023 2Michal Simon

Writing

• Client buffers the data until it has a full block

• The block is divided into chunks

• The chunks are erasure coded (Intel ISAL Reed-Solomon)

• All chunks (data/parity) are checksumed (h/w assisted CRC32C)

30/03/2023 3Michal Simon

Writing

• Each stripe is stored in a ZIP archive, each chunk is a separate file within the archive

Header: crc32, size, etc.

obj.0.0

Header: crc32, size, etc.

obj.1.0

Header: crc32, size, etc.

obj.2.0

Central Directory

Header: crc32, size, offset, name

Header: crc32, size, offset, name

Header: crc32, size, offset, name

Block: 0, Stripe: 0

Block: 1, Stripe: 0

Block: 2, Stripe: 0

30/03/2023 4Michal Simon

Writing

• Each stripe is stored in a ZIP archive, each chunk is a separate file within the archive

crc32

obj.0.0

crc32

obj.1.0

crc32

obj.2.0

Central Directory
Header

30/03/2023 5Michal Simon

Header
Header

crc32

obj.0.1

crc32

obj.1.1

crc32

obj.2.1

Central Directory
Header
Header
Header

crc32

obj.0.2

crc32

obj.1.2

crc32

obj.2.2

Central Directory
Header
Header
Header

crc32

obj.0.3

crc32

obj.1.3

crc32

obj.2.3

Central Directory
Header
Header
Header

Reading

• There is no need to reconstruct a block for every read

• Unless the client needs to do error correction

• While streaming the data user can benefit from full performance boost due to striping

• In order to verify the checksum the client at minimum needs to read a whole chunk

• Reads are translated into respective chunks

• Chunks are cached until user is accessing data within same block

Data Data Data Data

offset length

Data

offset length

30/03/2023 Michal Simon 6

Loading the EC plug-in

• On demand by the server

• The server can send a special redirect response that will trigger loading the plug-

in for given file

• The response contains: number of data and parity chunks, block size, placement

group (data servers hosting the stripes), additional cgi to be send to data servers

• Standard client plug-in config file

• EC layout, checksum type, etc.

• One think we cannot preconfigure is the placement group, in this case we have to

obtain it during runtime using deep locate

30/03/2023 Michal Simon 7

Operation support

• Open modes: Write + New or Read

• Natively in the EC module

• Open, Close, Read, VectorRead, Write

• In addition in the plug-in

• PgRead, PgWrite, Stat

30/03/2023 Michal Simon 8

Use Case: Alice O2

• 500 EPNs (Event Processing Node), each hosting 4 GPUs, each GPU generating a Time

Frame every 40 seconds

• 2000 data sources in total

• Aggregate throughput of 100GB/s

• A Time Frame (TF) corresponds to a single 2GB file in EOS

• TF has to be copied to EOS in less than 40 seconds

• Data sources transfer data directly to EOS (CERN CC) in (kind of) round robin fashion at

20 ms intervals

• every 20 ms a new file will be created and 2GB of data transferred

30/03/2023 9Michal Simon

Use Case: Alice O2

• Massimo’s test: clients run on the batch farm (20% of the target load), data recorded on

EOSALICEO2 cluster (10 servers, ~20% of production system)

• Client side EC plugin test: EPN simulator (4 AliceO2 servers) generating ~10% of the

target load, data recorded on 6 EOSALICEO2 servers (~10% of production system)

30/03/2023 10Michal Simon

Use Case: Alice O2

~30% of the target production load, ~10% of the cluster capacity

10+2 layout,

30GB/s of aggregate throughput

(600 streams),

1 hour run, 6 data servers

Avg duration: 1127msec

Avg transfer rate: 1.84GB/s

Transfer rate stdev: 0.317

Transfer duration stdev: 272

30/03/2023 11Michal Simon

Integrating XrdCl+EC with the xrootd storage

1. Mode 1. Use xrootd storage directly as an EC store
○ Xroot protocol and xrootd client (with EC support) only

2. Mode 2. Use XRootD Proxy as gateway to backend storage
○ Enable EC in the proxy’s xrootd client component.

○ EC is invisible to the users

■ They use existing xrdcp/xrdfs, gfal, curl

○ Support all WLCG security, protocols, TPC, etc.

○ The backend xrootd storage is plain and simple

12

This mode is better for user

access

● The rest of the slides are

about this mode

This mode is good for local

administration

30/03/2023 Michal Simon

Interface to users

Nothing changed: users will still work with root(s) or http(s) URL:

● https://atlas.cern.ch:1094/atlas/rucio/user/jdoe/my.data or

● root://atlas.cern.ch:1094//atlas/rucio/user/jdoe/my.data

● Think of “atlas/rucio/user/jdoe” as bucket, folder, whatever you like.

○ Your access permission may be based on top level buckets/folders.

Three sets of tools for GET/PUT/DEL/LIST/RENAME

● xrdcp/xrdfs: work mostly with root(s) URLs

● gfal2: works with both root(s) URL and http(s) URLs

● curl: works with http(s) URLs

Supports DTN functionality

● Authentication, VOMS, access tokens, TPC, etc.

1330/03/2023 Michal Simon

Performance test environment

Backend: XRootD storage:

● 19 nodes of retired Dell R510s, each:

○ 24GB RAM, 1Gpbs NIC, 12x 3TB HDD (some have 11)

○ Each HDD is presented to the OS as its own SCSI device (via LSI RAID controller)

○ CentOS 7, XRootD 5.3.4 (later auto-updated to 5.4.0), xrootd “sss” security

● 312 pre-placed test files (ATLAS data files) ranging from 30MB to 1.1GB, all with

known adler32 checksum

Frontend: XRootD EC proxy

● 64 core, 128GB, 100Gbps NIC

● CentOS 7, unreleased XRootD (2021-12-17+patch)

● EC configuration: 8+2, chunk size 1MB (so a block has 8+2 MB)

1430/03/2023 Michal Simon

Aggregate read performance by many clients

● Read the pre-placed 312 data files, repeat 5 times
● Spread the read to 150 concurrent clients
● Memory cache clearly helped, it both

○ cache (reduce read from storage)
○ enable large block read (align with EC blocks)

Throughput: View from storage

w/o mem cache w/ mem cache

Network upper limit

● 19 Gbit/s or

● 2.375GB/s

30/03/2023 16Michal Simon

Aggregated Read/Write performance

● By 200 concurrent clients

● Randomly pick 20 files from the 312 sample files

● Read and write back at the same time
○ Note: FS prioritizes write over read

Backend storage

view

● In: write

● Out: read

Memory cache: off

30/03/2023 17Michal Simon

Summary

● XrdEc is a very performant implementation, we run almost at h/w speed (Intel ISAL, h/w

assisted CRC32C)

● The tests at AliceO2 and SLAC yield very good results

● We started work on ops tools this summer (using student workforce), which resulted in

a xrdrepair tool

1830/03/2023 Michal Simon

