
XCache - Developments & Plans

XRootD Workshop @ JSI Ljubljana

March 30, 2023 Matevž Tadel, UCSD

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Overview
Introduction: overview & history

Review of features & relevant configuration options

Recent developments & Development plan

Questions & Discussion

2

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Introduction
XCache – brand name for XRoot disk-based file proxy cache

In code referred to as PFC – proxy-file-cache, so you will see:
● Classes and file-names prefixed by XrdPfc, e.g. XrdPfcFile and XrdPfcFile.hh/cc
● Configuration options prefixed by pfc, e.g. pfc.blocksize

3

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

To Cache … or not to Cache?
● Benefits of caching

a. You know you will (or hope to) reuse the data → reduce network use, pressure on data origins
b. Reduce latency and improve IO efficiency for jobs – especially with prefetching
c. A way for just-in-time data placement into unmanaged (or semi managed) storage

■ less worry about data/disk loss – if it happens it will get restored with little intervention
● How does this work in real life?

a. OSG StashCache has some great results for LIGO, Fermilab neutrino experiments, bio-stuff
■ Jobs with varying parameters that all reuse the same input

b. E.g. US CMS SoCal AOD data cache; all data available at Fermilab
■ caching cluster split between Caltech and UCSD (2ms RTT, 1 Gbps)
■ reasonable data reuse → ballance cached namespace against cache cluster volume

c. ATLAS – let's see what Ilija tells us :)
● Cache in the world of data lakes, swamps and deserts

a. Medium-size compute sites subscribe to a portion of possible data namespace
b. Schedule jobs based on input requirements →caches to pull in data as needed
c. For large VOs this runs into conflicts with the desire to have tight control over data placement

4

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

XCache in one slide
● Serve data to local clients:

○ Origin - remote data source
(usually data federation)

■ Data read in "blocks"
■ Optional prefetching

○ Store data on local disk via
write queue

○ Rely on VFS to help
○ Purge old files as disks get full

● XCache server is a "normal" XRootd server:
○ Authentication / authorization controls
○ LVM / multi-disk support
○ Tracing and monitoring
○ Clustering - Caching Cluster
○ Can use http on both ends

5

6

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

On origins, data sources, squids, and uniqueness
● Two modes of getting to the remote data

a. direct mode: specify data origin / redirector, assume all data will be available from there
■ this was original mode of ATLAS (FAX) / CMS (AAA) data federations

b. forwarding mode: source is specified with each request
■ e.g.: root://cache.cluster.here//root://server.to.talk.to//data/silly-user/joe/button.png
■ this is how ATLAS is using XCache now

c. combined mode: forwarding if requested, otherwise use direct mode as default

● Squid / browser-cache is always in mode b.
a. Further, the host name is part of the caching-object ID, i.e.

http://foo.org//a_file is different than http://bar.com//a_file

● In (XRootd) data federations, and also in XCache, we assume host does not
matter – path uniquely identifies a file and its contents.
a. Data versioning in HEP: directory postfixes (_v2), intermediaries (/Summer2019/) and GUIDs

■ so … at namespace-level
b. Projects that work around that: StashCache (XCache + cvmfs namespace), XCacheH (?)

7

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

History – 10 years!
- V1 (CHEP 2013)

- First implementation using "the old client"
- Hdfs fallback & healing

- V2 (XRootD @ ICEPP Tokyo, Nov. 2016)
- Reimplementation with "the new client" using async I/O for remote access
- Use XrdOss to access local disk, ability to build caching clusters
- XCache-V2 presentation gives a good overview of XCache

- Pre xrootd-5.0.0 (XRootD @ IN2P3 Lyon, Jun. 2019; slides)
- 2½ years of adiabatic improvements and new ways of using it, e.g.:

- client-side cache / direct cache access / forwarding mode
- Used in production (CMS, OSG/StashCache) and in testbeds (ATLAS, PRP, INet2)

- Now, xroot-5.6.0 (XRootD @ JSI Ljubljana, Mar. 2023)
- A number of improvements … to be discussed shorty!
- Usage: as above + deployments in POPs

8

https://indico.cern.ch/event/523410/contributions/2355711/
https://indico.cern.ch/event/727208/contributions/3444604/

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Review of

XCache configuration options & features

Thou shalt read the Holy Docs!

http://xrootd.org/doc/

9

http://xrootd.org/doc/

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Minimal XCache Server configuration
Mandatory directives

all.role proxy server # This is a proxy
all.export /store cache # Exported namespace

pss.cachelib libXrdFileCache.so # Request Proxy File Cache / PFC
pss.origin cmsxrootd.fnal.gov:1094 # Remote data source

oss.localroot /data/xrd-cache # Where data is stored on local disk

Frequently used pfc directives (the numbers given are defaults)

pfc.blocksize 128k {4k, 512M}
pfc.prefetch 10 { 0, 128}
pfc.ram 1G {1G, 256G}
pfc.diskusage 0.9 0.95 {no limits, can also be given in bytes}

xrootd -c hello-cache.cfg

10

11

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Forwarding mode Proxies
Sometimes the job / client knows where they want the data from - specify it as an
URL prefix!

all.export /some/path/ # Standard namespace export
all.export /root:/ # Yes, only one trailing / !
all.export /xroot:/ # Read the docs for details.
pss.origin = # Pure forwarding mode.
pss.origin = give.me.data.org:1094 # Combination mode, URL to use when not

specified.

Then this gets used as:

root://proxy.server.org//root://data.source.to.use:6666//some/path/to/a_file

12

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

pss.origin & remote authentication
● Standard XRootd client (XrdCl) is used to access remote servers

○ If you do manual xrdcp from the specified origin, that's mostly what happens in XCache

● If remote sources require authentication, the credentials have to be provided
in one of the ways accepted by XrdCl

○ X509:
■ Proxy in /tmp/x509up_u{user id of xrootd daemon}

● or set X509_USER_PROXY in daemon startup script
■ The grid proxy needs to be renewed as needed, XrdCl picks up the updated version
■ These days ATLAS and CMS mostly use VOMS membership for XRootd authentication

● Certificate DN has to be registered in VOMS
● Same certificate can be used on several cache nodes

■ Note - this is usually NOT the server certificate that is used by local clients / jobs during
authentication to the cache.

○ Tokens – to be tested / explored

13

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

pfc.blocksize & pfc.prefetch
● XCache downloads data in blocks and stores block status in a bit-vector to

keep track of which blocks are available locally.
○ NOTE: When prefetching is disabled, it is common to have sparse files on disk.
○ Information about downloaded blocks & past accesses is stored in a cache-info (.cinfo) files

● pfc.blocksize sets the size of the block (default now 128k)
○ Larger blocks are better for whole-file streaming access
○ Smaller blocks make more sense for sparse vector read type of access:

■ Especially when prefetching is disabled.
■ For ROOT files - Thou shalt know your basket sizes and access patterns!

● pfc.prefetch sets the maximum number of remote block read requests in
flight that is allowed to be reached by a prefetching request:

○ Normal reads are not limited by this number (if we need to get 100 blocks to satisfy a read
request, all 100 are requested asynchronously)

○ Prefetching is disabled when writequeue is 70% full.

14

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

pfc.ram & pfc.writequeue
● pfc.ram specifies the amount of RAM to be used for outstanding remote read

requests:
○ Additional RAM is allocated for local client requests, expect about pfc.ram + 2 GB total usage
○ When RAM is consumed, additional read requests get served in direct mode, serving the

request by forwarding the request to the remote as is.
○ Calculate: Nclients * Nvread_chunks * BlockSize, e.g. 500 * 200 * 0.125M = 12.5 GB

■ Again … you really should know your access patterns and expected load!
○ Beware: Some influential people advertise way too low value for this (1 GB)!

● This can lead to a lot of direct reads without storing of the data to disk.

● pfc.writequeue maxblks nthreads specifies:
○ number of blocks taken off the write queue in one writer thread iteration {1, 1024; dflt: 16}
○ number of writer threads {1, 64; dflt: 4}

15

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

pfc.diskusage
pfc.diskusage lowWatermark[k|m|g|t] highWatermark[k|m|g|t] # can also be fractions of available space
 [files base[k|m|g|t] nom[k|m|g|t] max[k|m|g|t]]
 [{purgeinterval | sleep} purgeitvl[h|m|s]]
 [purgecoldfiles age{d|h|m|s} period]

● Watermarks {0.9 0.95} specify window in which total disk usage will be kept
● files allows setting of actual data file usage limits

○ relevant and useful when disk is shared with another service or for client-side caching
■ max & nom: when max is reached, files are purged down to nom
■ purging below nom is done if required by total usage > highWatermark
■ base: minimum / guaranteed space, files will not be purged below this

● purgeinterval {5m} how often to check the disk usage
○ Total usage is checked, estimation of file usage is done by adding up # of bytes written

■ actual cache scan is only done if needed

● purgecoldfiles {disabled} remove files that have not been accessed in age
○ disk scan for cold files is forced every period purge cycles

16

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Using OSS Logical Volume Manager & pfc.spaces
oss.localroot /xcache-root # Location where sym-links to files will be kept

(put this on a SSD)

oss.space data /data1/xcache # Add all your data disks to LVM space
oss.space data /data2/xcache
oss.space data /data3/xcache
oss.space data /data4/xcache

oss.space meta /xcache-meta # Another space for metadata / cinfo files
(put this on a SSD, too)

pfc.spaces data meta # Tell XCache which spaces to use

17

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

pfc.decision
pfc.decisionlib path [libopts]

● Plugin that decides whether to cache to disk or not
● Reference implementation: https://github.com/osschar/xrdpfc-decision-ucsd

pfc.decisionlib libXrdPfcDecisionUcsd.so \
 +^/+store/data/Run2016[A-Z]/[^/]+/MINIAOD/03Feb2017" \
 +^/+store/mc/RunIISummer16MiniAODv2/[^/]+/MINIAODSIM/PUMoriond17_80X_ \
 +^/+store/user/matevz/
 -.

Dev notes: need to add optional support for "redirect to origin".
 Requires jobs to have correct credentials to access federation and
 not only the cache – which might or might not be true.

There is also: xrootd.fsoverload bypass redirect origin.org:1094

18

https://github.com/osschar/xrdpfc-decision-ucsd

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Tracing / debugging options
● pfc.trace none | error | warning | info | debug | dump {warning}

○ Trace XCache operations, use:
■ info to see what is happening
■ debug when reporting problems

● To debug connections to the federation (4 Debug, 3 Error, 2 Warning, 1 Info)
○ pss.setopt DebugLevel 4 # Equivalent to xrdcp -d2 …
○ This produces A LOT of output, use only when needed

● Use trace of other components, e.g. (but see the docs):
■ xrd.trace conn
■ xrootd.trace emsg login stall redirect
■ ofs.trace delay

19

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

pss options - Honorable mention
These set parameters for XrdCl – for access to the federation / data sources

pss.inetmode {v4 | v6} {v6} # good thing to try if you suspect ipv6 problems

pss.setopt ConnectTimeout seconds {120s} # Some of these timeouts are way too long
pss.setopt DataServerConn_ttl seconds {20m} # for XCache.
pss.setopt RedirectorConn_ttl seconds {60m}
pss.setopt RequestTimeout seconds {5m}

Number of poller threads
pss.setopt WorkerThreads number {64} # A good number, used to be much lower, 4, IIRC.

Remove from config if your setting is lower.

20

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Setting up a cache server
1. Install, prepare config file, set pfc.trace info
2. If X509 authentication to origin server/federation is required:

a. Setup X509 proxy for xrootd user, prepare automatic renewal script
i. Best to have them in /tmp/x509up_u`id -u xrootd`

b. Test: as xrootd user run: xrdcp -f -d2 root://origin.org//some/known/file /dev/null
c. ipv6 problems will also show up here! Try setting env XRD_NETWORKSTACK=IPv4

3. Test config file, general sanity:
a. Test: xrootd -c /etc/xrootd/xcache.cfg - this prints startup info to stdout

4. Test startup through init.d / systemd:
a. Check /var/log/xrootd/<name-passed-to-xrootd-if-any>/xrootd.log

5. Test copy through the proxy:
a. xrdcp -d 2 -f root://localhost:1094//some/known/file /dev/null
b. If trouble, look at the log, make sure step 2. above works for xrootd user
c. If more trouble - ask on xrootd-l <xrootd-l@slac.stanford.edu>

21

mailto:xrootd-l@slac.stanford.edu

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Essential configuration for a caching cluster
Redirector running at ports 2040/2041
all.role proxy manager # only accept proxy servers
xrd.port 2040 # xrootd at 2040
all.manager xrootd.t2.ucsd.edu 2041 # cmsd at 2041
all.export /store cache # stage + read-only
cms.sched maxretries 0 nomultisrc # prevent opening of the same file on several machines
cms.fxhold noloc 15m 4h # reduce time file existence info is kept (purging!)

XCache servers
all.role proxy server
all.manager xrootd.t2.ucsd.edu:2041
all.export /store cache # read-write for xrootd; stage read-only for cmsd

pss.cachelib libXrdFileCache.so
pss.origin cmsxrootd.fnal.gov:1094
...

22

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Direct Cache Access & pss.dca
● On a shared filesystem, redirect clients to read from the FS directly:

○ Only happens when a file is fully downloaded.
■ PSS calls XCache to check for this and XCache marks a special access record to

avoid purging of the file.
○ Useful for HPC sites that usually have some fancy interconnect and RDMA.

pss.dca [recheck {time | off}]

● recheck specifies interval (in seconds) between checks if the file is fully
downloaded - when it is, clients are redirected to local filesystem.

● By default this is off and check is only done at Open.

23

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Serverless / client-side caching
● Idea: Whenever XRootd is used, silently route traffic through an impromptu

cache server running on the local machine.
○ Files get stored for subsequent use, even in offline mode (sort of like CVMFS).

■ Remote access is not even tried until a missing file / block is requested.
○ Available only through the POSIX interface!
○ And it only works for a single process.

export LD_PRELOAD=/usr/lib64/libXrdPosixPreload.so
export XRDPOSIX_CONFIG=/path-to-config/disk-cache.cfg
Run your command

Minimal config example:

posix.cachelib /usr/lib64/libXrdFileCache.so
oss.localroot cachepath # e.g. $JOB_TMP/xcache
pfc.diskusage 0.9 0.95 files 10G 40G 50G
pfc.ram 512m {256M, 64G; dflt: 256M}

24

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

New developments
since the 2019 Lyon workshop

25

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Support pgRead and checksums
pfc.cschk { [[no]cache] [[no]net] [off] [[no]tls] [uvkeep {n[d|h|m|s]} | lru}}

● A talk by Andy later today – page-read allows parallel transport of 4k crc32c
checksums

● Cache corruptions were one of the major motivations
○ network errors → corrupted data in cache → "cache poisoning"

● Default is net tls → data is guaranteed to have "come across" correctly
○ automatic retry, within XrdCl

● Checksums also on disk: XrdOssPgi documentation
○ ofs.osslib ++ /usr/lib64/libXrdOssCsi.so

● Notes:
○ pgRead uses max 64kB blocks … tie-back to async block size.
○ uvkeep – when to purge files with inadequate guarantees

26

https://github.com/xrootd/xrootd/tree/master/src/XrdOssCsi

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Fully Asynchronous (pg)Read(V), both ways
● Previously, only read requests to the federation were asynchronous

○ Read requests coming from local clients, through XRootd were stalled, waiting for all data to
become available

○ This prevents xrootd.async from doing what it is supposed to do: enter a "streaming" mode
with chunking up of incoming requests into 64 kB blocks

○ Also: Slow origins in OSG / StashCache federation – thread hogging → thread traffic jam

● Now POSIX calls asynchronous read on the cache IO and is called back
when data is assembled from the remote, RAM & disk (and direct read)

● This is the reason why pfc.blocksize default was reduced from 1M to 128k
○ There is no guarantee that incoming read requests are block-aligned
○ One can increase xrd.async segsize – or reduce further the cache block
○ But note: as cache uses pgRead to read from the remote, those will go out in 64 kB blocks

anyway.

27

https://xrootd.slac.stanford.edu/doc/dev55/xrd_config.htm#_async

28

29

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

XCache & g-stream
xrd.mongstream pfc use flush 10s maxlen 24000 send json insthdr
localhost:9932

● Report each file access in g-stream record
○ Data payload is always JSON formatted
○ Various header options to simplify direct consumption
○ remote sources and number of checksum errors are also listed
○ Note: one cache access can mean several client accesses! POSIX hides them in direct mode.

{
"event":"file_close", -- hardcoded event type for record emitted at file_close time
"lfn": "%s", -- LFN of the file
"size":%lld, -- file size [bytes]
"blk_size":%d, -- block size used by cache [bytes]
"n_blks":%d, -- total number of blocks
"n_blks_done":%d, -- number of blocks already downloaded / in cache
"access_cnt":%lu, -- number of IO objects that were attached to the file during the time the file was opened
"attach_t":%lld, -- epoch when the first IO object was attached / file was opened at the cache
"detach_t":%lld, -- epoch when the last IO object was detached
"remotes":%s, -- list of remote origins where the file was read from during the time the file was opened
"b_hit":%lld, -- bytes served from the cache (disk or RAM) [bytes]
"b_miss":%lld, -- bytes served that had to be fetched from the remote [bytes]
"b_bypass":%lld, -- bytes served in bypass mode, read from remote but not written into cache [bytes]
"n_cks_errs":%d -- number of checksum errors reported by the XrdCl during remote reads.
} 30

https://xrootd.slac.stanford.edu/doc/dev55/xrd_config.htm#_Toc88514008

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

oss.space: check mount-point & ignore missing disk
oss.space data /data1/xcache chkmount xrd-mnt-check nofail
oss.space meta /xcache-meta
pfc.spaces data meta

● Really an OFS development … but very relevant for caches
○ chkmount allows one to require a magic file to be present in the mountpoint

■ Otherwise: bad disk – does not get mounted – contents of mount point in / → full /
○ nofail continue without this disk, en error is reported in the startup log

● We recommend using "raw" disks
○ XCache can have O(1000) or more concurrent clients / write streams

■ Slicing each of them onto N disks increases number of iops per disk!
○ Also – it's a cache – if a disk fails we really do not care, we can easily repopulate.

● This allows a cache to be restarted with a missing disk, or with a new disk –
everything "just works"

31

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Caching cluster – do not allow multi-source reading
cms.sched maxretries 0 nomultisrc

● Scenario: caching cluster, greedy multi-stream readers
○ E.g., CMS XrdAdaptor to TFile → does multi source reading to select the best performing one
○ uses tried=hostname opaque parameter to instruct the redirector NOT to give it back an

existing source; this works very well for true remote reading
○ But, redirects the client to a new cache server ⇒ multiple copies of the same file in the cache

● Provide additional opaque parameter: triedrc=resel
○ Tells cmsd that the open request is trying to do a source re-selection

■ We disable this for the cache with nomultisrc

● Client must be honest!
○ Old CMSSW versions still do not have the resel support → maxretries 0

■ This fails a job when there is a caching error – not ideal.

32

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Minor changes – a day in the life of an XCache developer

● Use OssAt during purge traversal to reduce pressure on the filesystem.
● Merging of cinfo records
● Report cache stats as part of summary monitoring
● Allow up to 512MB blocksize (was 16 MB, requested 64MB for Ceph)
● Reduce cache-block allocation churn:

○ allocate cache-blocks on page boundaries;
○ keep up to 5% of standard-sized blocks in a pocket for quick reuse

● Multiple write queues – saturate SSDs!
● Winterization

○ Consistency checks between cached and actual file meta-data (size, access log corruption)
○ Resiliency of cinfo files (separate core/access cksums)
○ Purge file on any sign of error, report error to requesting clients

● HDFS mode "large-block" feature is disabled.
○ Was implemented with one cache-file per hdfs-block → only made sense for healing.
○ Can be revived / implemented better if there is interest (through a prefetch policy).

33

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Development plans

34

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Per directory usage, quotas & monitor / purge plugin
● This is already partially implemented

○ pfc.dirstats maxdepth 2 dir /foo/bad/users/*
○ dumps report in a file every purge cycle

● There has been a desire for per-directory quotas around for a while
○ OSG with multi-tenant caches; runaway usage by a VO or even a single user
○ but never strong enough push to actually implement it (it is quite hard)

● Alternative or extension, proposed by Brian / Kingfisher project is:
○ LotManager component that takes over cache monitoring & management
○ can be a plugin … but could also be a service … or both

35

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Prefetching
● Current (well, 10-years old) algorithm is rather stupid, just reads the missing

blocks in order.
○ This is fine for in-order access … or for slow-reading clients.
○ Also, results in a full file eventually showing up in the cache.

● A better algorithm would allow one to:
○ specify heuristic: on open, read N-bytes from the head, M-bytes from the tail (ROOT)
○ let the incoming reads drive the actual prefetching … read ahead of the last reads

■ tricky for vector-reads without knowing the branch/basket layout
○ specify how far ahead to read → do not read & cache a full file unless required

■ This is particularly important if / when we move to (extremely) large files.
○ Provide preRead(v) in XrdOucCacheIO interface – an ABI change → not before v6

■ preread vector can be sent as a part of the kXR_read request – send zero size read
● the interface would need to be added in user code, too, TXNextGenFile & similar

36

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Service work, community, etc.
● Follow up on developments in XRootd
● Keep in touch with the main users:

○ Advise, improve existing features, develop extensions
○ Help with debugging
○ Weekly xcache-devops meeting (Thursday 11am Pacific)

■ OSG, ATLAS, CMS + others, as needed
■ xcache@opensciencegrid.org
■ slack OSG#xcache

● General user / developer support
○ Ask questions: xrootd-l <xrootd-l@slac.stanford.edu>
○ Report problems: https://github.com/xrootd/xrootd/issues

37

mailto:xrootd-l@slac.stanford.edu
https://github.com/xrootd/xrootd/issues

M. Tadel, XCache Developments & Plans, XRootD@JSI Ljubljana, March 2023

Questions / Discussion

38

