

CERN's storage solution for LHC Run3 and beyond

G. Amadio, Andreas J. Peters, Elvin Alin Sindrilaru
CERN IT Storage Group

31 March 2023

Overview

- EOS Services at CERN
- EOS Usage statistics
- EOS Architecture
- EOS & XRootD
 - Client
 - Server
 - Async Close
 - Token
- Final Remarks

EOS at CERN

How is EOS used?

2023 Targets

Total Space 780 PB

Files Stored

~8 Bil

Storage Nodes

~1300

Disks ~60000

24 individual instances

8 Physics 8 CERNBox 8 CTA

EOS Deployments at CERN

8 Physics, 8 User/Project (CERNBox), 8 CTA EOS Instances at CERN + various pre-production installations

EOS Usage at CERN

- root.exe

http

Value: 193 PB Percent: 5%

Value: 169 PB Percent: 4%

Total amount of free read

Total amount of Pyres read

Total amount of Pyres written

Total amount of Pyres written

590 PB

Reading 2020: **2.5 EB** => [last 12mo]: **3.95 EB** +**58**%

Experiment

CERN Experimental Site

EOS O²

88 Node Disk pool with Erasure Coding 10+2 2022 Capacity 110 PB

00 10-40 GB/s **Dataflow & Storage** shared TAPE **EOS** 48h Storage Worldwide LHC SDD Fallback Buffer 100 GB/s Computing GRID Disk 110 GB/s 110 PB **EOS** 250 Nodes 100-250 GB/s 5 Tbit/s 10+ GB/s 2k x GPUs 10-100 GB/s 3h Storage Posix FS Realtime Buffer **ALICEO**² CERN Flash Cloud **Update to 170 PB in 2023** shared

CERN Computer Center

EOS O²

New Standard Hardware for EOS Physics Storage

O² disk server have 96 HDDs with 100GE ethernet connectivity

- This type of hardware is the new standard getting installed also in other LHC experiment EOS instances [HDD sizes 14++ TB]
- Performance baseline is around 6 GB/s streaming reads and 3.5 GB/s streaming reconstruction/writes with erasure coding per disk server
- Excellent Run-3 operation experience for ALICE with erasure coding RS 10+2
 - like 3 replicas but only 20% volume overhead
 - bandwidth per file up to 2.5 GB/s >800 IOPS

EOS O² Benchmark^{07/03/2023}

Uses EOS EC implementation (not XrdEc) with 2022 capacity (88 nodes)

READ and WRITE

~10 streams per HDD 6.8k cp Streams in total

Expect Instance Capacity/Perf +50% extension soon...

EOS O² Benchmark^{23/03/2023}

Uses EOS EC implementation (not XrdEc) with extended capacity (100 nodes / +20 % space/hdds)

20% more performance

Network Output Rate

External Nodes	Internal Nodes	Filesize	Parallellism	Total Clients	Streams	Server	HDDs
48	100	20 GiB	50	7400	88800	100	9598

Test Setup

EOS O² Single Stream Read Performance Evolution

Replication vs EOS Erasure Coding in O² using RS 10+2

EOS - behind the curtain ...

File Transaction

XrdCl Client Usage

- Most demanding use case is eosxd(3) [FUSE mount]
 - Highly multi-threaded
 - Uses XrdCl::File for data operations
 - good parallelism
 - Uses XrdCI::FileSystem::Query for namespace operations
 - bottleneck because server side processing serializes all requests
 - o limits create/s for a single client maybe wrong type of plug-in call?
 - Extremely sensitive to XrdCl bugs
 - clients hanging, idle batch jobs, even complete node lookups (coupling on a node via **df** etc.)
 - at any moment we have 20k-30k clients very good QA platform 😊
 - a lot of bugs have been found (and fixed) in V5
 - we have reached a similar stability now with V5 as V4 (EOS client 5.1.14 vs 4.8.51)

FUSE performance

- 100 GE network
- Creations
- Single Stream Performance

Single Client	eosxd3
Seq.Creation	700 Hz
Par. Creation	1000 Hz
Seq. Read	1.6 GB/s
Seq. Write	900 MB/s

XrdCl Client Usage

- Communication between storage daemon (FST) uses client for
 - Writing for replicated and erasure coded files
 - Reading erasure coded files
 - o TPC
- again very sensitive to client bugs, even more concurrency
 - Several client bugs have been identified and fixed also here!

XRootD Server Usage

- Namespaces (MGM) implemented as OFS plug-in
 - o single thread-pool in XRootD server for everything
 - we have no way to prevent DOS in the authentication process
 - EOS has mechanisms to restrict number of active threads per users and request rates, but they only apply after authentication has been done
- Storage Server (FST) implemented as OFS+OSS plug-in
 - we have implemented direct IO in our OSS with very good results, could be useful to have this In the default OSS (can be useful for XCache, NVMEs etc.)
- In general
 - core server is very stable
 - HTTP is still moving target
 - streaming performance very good
 - requests/s scaling/latency worse (saturates around 100kHz)
 - TPC implementation for WAN suboptimal (libcurl **pipelining vs multiplexing vs chunking**)
 - Token authentication, authorization still moving target and often confusing
 - parallel socket implementation in XRootD with low performance for single file transfers in LAN (not better than single socket!)
 - but managed single file transfer of 10 GB/s using extreme copy with manual connection multiplexing (why not an option for xrdcp and xrdcp/tpc ?)

EOS & XRootD - Use of Async Close

EOS file checksum mechanism

- Best-effort: for streaming files check is computed "in-flight"
- For non-streaming cases the file is re-read during the close operation

Problem

For large files (>10GB) can take more than the default XRD_STREAMTIMEOUT

Side-effects

- Client sees a timeout error and a failed close operation
- The server happily re-computes the checksum and closes the file successfully

Mitigation

- Use the async close functionality (SFS_STARTED / kXR_waitresp)
- The client will receive a notification from the server then the operation is done
- The client will wait for a certain amount of time for the response

Outcome

- Deployed in production instances and no more complaints from the users
- Hit a few nasty bugs along the way but now running stable

EOS & XRootD - Integration of XRootD token support

- EOS has now full support for **tokens over xroot** protocol (since eos-5.1.15)
 - Configuration wise identical to XRootD ztn

```
# File: /etc/xrd.cf.mgm

sec.protocol ztn
sec.protbind ztn krb5 ...
```

ztn support needs to be enabled explicitly in EOS

```
# EOS console
eos vid enable ztn
```

- EOS HTTP (TPC) already has support for different types of tokens (macaroons/scitokens)
 - EOS relies on XrdHttpTPC plug-in
- EOS also supports SE-tokens called "EOS tokens" to use these over ztn, token validation has to be disabled using ztn -tokenlib none (the scitokens library cannot validate EOS tokens)

Final remarks

- For EOS releases still building own internal XRootD package due to critical/cutting edge bug fixing for production - hopefully soon not necessary anymore for V5
- Since many years excellent support and teamwork within the XRootD collaboration
- XRootD provides an excellent client-server framework for physics data storage
 - Core framework for EOS moving exabytes reliably each year (almost)

Thank you! Questions? Comments?

Europe/Zurich timezone

Enter your search tern

Q

Overview

Scientific Programme

Call for Abstracts

Timetable

Contribution List

My Conference

My Contributions

Book of Abstracts

Registration

Participant List

Privacy Information

Videoconference

You are invited to join the 7th EOS workshop end of April at CERN

https://indico.cern.ch/event/1227241/

