

CERN’s storage solution for LHC Run3 and beyond

G. Amadio, Andreas J. Peters, Elvin Alin Sindrilaru
CERN IT Storage Group

31 March 2023

Overview

● EOS Services at CERN
● EOS Usage statistics
● EOS Architecture
● EOS & XRootD

○ Client
○ Server
○ Async Close
○ Token

● Final Remarks

EOS at CERN 2023 Targets

Capacity Evolution

How is EOS used?

EOS Deployments at CERN
8 Physics, 8 User/Project (CERNBox), 8 CTA EOS Instances at CERN + various pre-production installations

EOS Usage at CERN
IO Statistics of the last 12 month

EOS O2
88 Node Disk pool with Erasure Coding 10+2
2022 Capacity 110 PB

EOS O2

New Standard Hardware for EOS Physics Storage

O2 disk server have 96 HDDs with 100GE ethernet connectivity

● This type of hardware is the new standard getting installed also in other LHC
experiment EOS instances [HDD sizes 14++ TB]

● Performance baseline is around 6 GB/s streaming reads and 3.5 GB/s
streaming reconstruction/writes with erasure coding per disk server

● Excellent Run-3 operation experience for ALICE with erasure coding RS 10+2
○ like 3 replicas but only 20% volume overhead
○ bandwidth per file up to 2.5 GB/s - >800 IOPS

EOS O2 Benchmark07/03/2023

Uses EOS EC implementation (not XrdEc) with 2022 capacity (88 nodes)

EOS O2 Benchmark23/03/2023

Uses EOS EC implementation (not XrdEc) with extended capacity (100 nodes / +20 % space/hdds)

Network Output Rate

● 20% more performance

Test Setup

EOS O2 Single Stream Read Performance Evolution
Replication vs EOS Erasure Coding in O2 using RS 10+2

1 HDD
10 HDDs

Maximum Stream performance tunable by Erasure Coding parameters!

EOS - behind the curtain …

File Transaction

EOS & XRootD

EOS & XRootD

XrdCl Client Usage

● Most demanding use case is eosxd(3) [FUSE mount]
○ Highly multi-threaded

■ Uses XrdCl::File for data operations
● good parallelism

■ Uses XrdCl::FileSystem::Query for namespace operations
● bottleneck because server side processing serializes all requests

○ limits create/s for a single client - maybe wrong type of plug-in call?
○ Extremely sensitive to XrdCl bugs

■ clients hanging, idle batch jobs, even complete node lookups
(coupling on a node via df etc.)

■ at any moment we have 20k-30k clients - very good QA platform 😊
■ a lot of bugs have been found (and fixed) in V5

● we have reached a similar stability now with V5 as V4
(EOS client 5.1.14 vs 4.8.51)

Single Client eosxd3

Seq.Creation 700 Hz

Par. Creation 1000 Hz

Seq. Read 1.6 GB/s

Seq. Write 900 MB/s

FUSE performance
● 100 GE network
● Creations
● Single Stream Performance

EOS & XRootD

XrdCl Client Usage

● Communication between storage daemon (FST) uses client for
○ Writing for replicated and erasure coded files
○ Reading erasure coded files
○ TPC

● again very sensitive to client bugs, even more concurrency
○ Several client bugs have been identified and fixed also here!

EOS & XRootD

XRootD Server Usage

● Namespaces (MGM) implemented as OFS plug-in
○ single thread-pool in XRootD server for everything

■ we have no way to prevent DOS in the authentication process
● EOS has mechanisms to restrict number of active threads per users and

request rates, but they only apply after authentication has been done
● Storage Server (FST) implemented as OFS+OSS plug-in

○ we have implemented direct IO in our OSS with very good results, could be useful to have this
In the default OSS (can be useful for XCache, NVMEs etc.)

● In general
○ core server is very stable
○ HTTP is still moving target

■ streaming performance very good
■ requests/s scaling/latency worse (saturates around 100kHz)
■ TPC implementation for WAN suboptimal (libcurl pipelining vs multiplexing vs chunking)

○ Token authentication, authorization still moving target and often confusing
○ parallel socket implementation in XRootD with low performance for single file transfers in LAN

(not better than single socket!)
■ but managed single file transfer of 10 GB/s using extreme copy with manual connection multiplexing

(why not an option for xrdcp and xrdcp/tpc ?)

EOS & XRootD - Use of Async Close

● EOS file checksum mechanism
○ Best-effort: for streaming files check is computed "in-flight"
○ For non-streaming cases the file is re-read during the close operation

● Problem
○ For large files (>10GB) can take more than the default XRD_STREAMTIMEOUT

● Side-effects
○ Client sees a timeout error and a failed close operation
○ The server happily re-computes the checksum and closes the file successfully

● Mitigation
○ Use the async close functionality (SFS_STARTED / kXR_waitresp)
○ The client will receive a notification from the server then the operation is done
○ The client will wait for a certain amount of time for the response

● Outcome
○ Deployed in production instances and no more complaints from the users
○ Hit a few nasty bugs along the way but now running stable

EOS & XRootD - Integration of XRootD token support

● EOS has now full support for tokens over xroot protocol (since eos-5.1.15)
○ Configuration wise identical to XRootD ztn

○ ztn support needs to be enabled explicitly in EOS

● EOS HTTP (TPC) already has support for different types of tokens (macaroons/scitokens)
○ EOS relies on XrdHttpTPC plug-in

● EOS also supports SE-tokens called “EOS tokens” - to use these over ztn, token validation has to be
disabled using ztn -tokenlib none (the scitokens library cannot validate EOS tokens)

EOS & XRootD

Final remarks

● For EOS releases still building own internal XRootD package due to
critical/cutting edge bug fixing for production - hopefully soon not necessary
anymore for V5

● Since many years excellent support and teamwork within the XRootD
collaboration

● XRootD provides an excellent client-server framework for physics data
storage

○ Core framework for EOS moving exabytes reliably each year (almost)

Thank you! Questions? Comments?

https://indico.cern.ch/event/1227241/

You are invited to join the 7th EOS workshop end
of April at CERN

https://indico.cern.ch/event/1227241/

