

CERN FTS site report

XRootD and FTS Workshop 2023 at JSI

Steven Murray on behalf of the CERN FTS team Monday 27th March 2023

Deployment architecture

FTS

Database configuration

• FTS queries benefit a lot from a large RAM cache:

• innodb_buffer_pool_size

- It is important to have a long enough log file to record operations that have occurred during an on-line Data Definition Language (DDL) operation:
 - innodb_online_alter_log_max_size

CERN production instances

There are 6 production FTS instances at CERN

Instance	No. of VMs	VCPUs per VM	RAM per VM	Disk space per VM	innodb_buffer_ pool_size	<pre>innodb_online_alter_ log_max_size</pre>
ATLAS	10	16	28.6 GiB	160 GB	80 GiB	12.5 GiB
CMS	10	16	28.6 GiB	160 GB	40 GiB	12.5 GiB
DAQ	5	8	14.2 GiB	80 GB	4 GiB	128 MiB
LHCb	5	16	28.6 GiB	160 GB	12 GiB	128 MiB
Pilot	5	8	14.2 GiB	80 GB	12 GiB	1 GiB
Public	5	8	14.2 GiB	80 GB	4 GiB	1 GiB

CERN FTS site report - XRootD and FTS Workshop 2023 at JSI

Database as a service

- Our in-house database on demand (DBoD) service provides our MySQL databases
- Some FTS use-cases lacked performance
- The performance problems were addressed by:
 - Adding a replica database for long monitoring queries
 - Defragmenting the main database once a week
- We have setup our own replicated database on dedicated hardware but we are currently sticking with DBoD

FTS headnode machines

• All HTTP transfers use libcurl as opposed to libneon

/etc/sysconfig/fts-qos:DAVIX_USE_LIBCURL=Y
/etc/sysconfig/fts-server:DAVIX_USE_LIBCURL=Y

systemct1 restarts the FTS daemons when they crash

/usr/lib/systemd/system/fts-bringonline.service:Restart=on-failure /usr/lib/systemd/system/fts-msg-bulk.service:Restart=on-failure /usr/lib/systemd/system/fts-msg-bulk.service:RestartSec=3 /usr/lib/systemd/system/fts-qos.service:Restart=on-failure /usr/lib/systemd/system/fts-gos.service:RestartSec=3 /usr/lib/systemd/system/fts-server.service:Restart=on-failure /usr/lib/systemd/system/fts-server.service:RestartSec=3

 HTTP daemons are restarted every hour to make them read the Certificate Revocation Lists (CRLs)

crontab -1

30 * * * * (/usr/sbin/fetch-crl; /usr/bin/systemctl restart httpd.service) &> /dev/null

FTS watchdog machine

Poll FTS and send monitoring messages to Graphite

FTS database backup

Backup important database tables

• Defragment the main databases

OPTIMIZE NO_WRITE_TO_BINLOG TABLE t_file OPTIMIZE NO_WRITE_TO_BINLOG TABLE t_job

crontab -I 0 10 * * 1 /usr/bin/ftsdefragdb --vo XXXX ...

- Privacy Notice: File Transfer Service (PN00048)
 - https://cern.service-now.com/service-portal?id=privacy _policy&se=file-transfer¬ice=fts
- Details include:
 - Personal Data we process
 - Personal Data we keep
 - Who at CERN has access
 - Personal Data we may transfer to others

Disaster recovery

- The FTS Virtual Machines are fully Puppetized
- New fully installed Virtual Machines can be created in tens of minutes
- If needed the main database tables can be retrieved from encrypted backups

- 1. Try to recover here at CERN during approximately 1 hour
- 2. If CERN is still not back then ask experiments to redirect their FTS requests to alternative sites around the World, for example:
 - ATLAS Use BNL FTS
 - CMS Use FNAL FTS

Data volume transferred per month during 2022

GridFTP is being phased out

Transfers per month managed by the CERN FTS instances

Transfer volume by Tier

Total volume transferred per WLCG tier during 2022 - All FTS sites

Comparison of WLCG instances

Total volume transferred during 2022 - Top 8 WLCG instances

- fts3-atlas.cern.ch Total: 833 PB - bnl Total: 217 PB - fts3-cms.cern.ch Total: 200 PB - fts3-pilot.cern.ch Total: 37.7 PB - cmsfts3.fnal.gov Total: 36.2 PB - fts3-public.cern.ch Total: 21.4 PB - fts3-lack.cern.ch Total: 200 PB - fts3-daq.cern.ch Total: 8.44 PB

home.cern