ATLAS Data Flows & FTS

Mario.Lassnig@cern.ch

13 TeV detector data

8 quadrillion collision candidates 92 petabytes

130 million files

13 TeV simulation data

166 petabytes 544 million files

Experiment data flow 1/2

Original ATLAS computing model designed as static **clouds**

ATLAS Clouds ≠ "Cloud computing"

Mostly national or geographical groupings of sites

Common funding agencies

Support often using the same language

Model had a series of shortcomings

Individual tasks inflexibly executed within a static cloud

All tasks **output aggregated** at the 10 Tier-1s

The **Tier-2 storage** was not optimally exploited

High priority tasks were **occasionally stuck** at small clouds

Experiment data flow 2/2

WLCG networks have evolved significantly in the last two decades

Limiting transfers within a single cloud **no longer necessary**

Now single **WORLD** cloud site concept

Nucleus

Any stable site can aggregate the output of a task Site **can be manually assigned** as a nucleus

Satellites

Process the jobs and send the output to the nucleus

Defined dynamically for each task

No longer confined inside the original cloud

Currently around **130 active sites** used by ATLAS

Job types drive the data volume

Global shares are employed to allocate the available resources among the activities

Done on agreement between the various production and physics groups

Hierarchical implementation

Related activities have the opportunity to **inherit unused resources**

Essentially two categories of jobs

Production Data reprocessing

Event generation / Simulation / Reconstruction

Group production

Analysis User analysis

Group analysis

The main activity at a given time can depend on many things

Data reprocessing or Monte Carlo production campaigns

Conference deadlines, need for an increase for user analysis

Global pandemics

User Analysis	137 Mil	34%
Group Analysis	51.1 Mil	13%
MC Event Generation	47.2 Mil	12%
MC Simulation Full	47.0 Mil	12%
Group Production	31.9 Mil	8%
MC Reconstruction	28.0 Mil	7%
Testing	24.5 Mil	6%
MC Merge	12.8 Mil	3%
t0_processing	6.94 Mil	2%
MC Simulation Fast	5.44 Mil	1%
Data Processing	4.70 Mil	1%

Data transfer rates

A few numbers showing the ATLAS scale

- 1B+ files, 700+ PB of data, 400+ Hz interaction
- 120 data centres, 5 HPCs, 3 clouds, 1000+ users
- 1.2 Exabytes/year transferred
- 2.7 Exabytes/year uploaded & downloaded

Increase 1+ order of magnitude for HL-LHC

Data management

Rucio handles the data management

Creation, location, transfer, deletion, annotation, and access

Orchestration of dataflows with both low-level and high-level policies

Coherent interface required to allow smooth data handling for production and users

We also have data management internal flows (recovery, rebalancing, ...)

ATLAS sites are not homogeneous

Different storage, **different** protocols Hello **FTS**, **GFAL** and **Davix** :-)

ATLAS deployment

Two FTS servers in production Plus regularly the pilot & test services

Average file flow rate

15 million successful transfers per day 2 million failed transfers per day Mostly site configuration problems

Cloud Storage

Integration into ADC systems PanDA & Rucio - and thus in turn FTS, GFAL, Davix Very **close development collaboration** across the full stack

Large development programme in front of us to make cloud storage viable

Throughput **control**, access **control**, peering **control**, cloud transfer tool **control**, lifetime **control**, ...

HTTP TAPE REST API

ADC wants to move to the new HTTP TAPE REST API earlier than later

By the way, we need a better name for this... HTRA? Doesn't work...:-D Four volunteer sites: CERN, FZK, DESY, BNL

All CTA endpoints use the archive_timeout=86400 functionality

State of the manual functional tests

Successful archive & recall at CERN CTA

Successful archive at FZK :: dCache version upgraded on Monday :: New tests coming asap

BNL ready for testing

DESY waiting for configuration

Plan for putting it in production

Once manual functional tests are successful, change the **LOCALGROUPTAPE** at the site Once we're confident it works well, switch the remaining tape endpoints at the site

HL-LHC data roadmap

Next data challenge jumps from 10% (960 Gbps) to 25% (2400 Gbps) of HL-LHC needs

Large single step increase of volume in the decade-long plan - had to reduce from 30%

Potentially need to reconsider due to new HL-LHC schedule and hardware purchasing

Token-based authentication will be deployed and tested at scale during DC24

With communities beyond WLCG, such as DUNE, SKA, Belle II, JUNO, ...and the NRENs
We spend a considerable effort to share our data management stack
Allows us to work together on these shared challenges

One interesting point: For the middleware stack, the volume is rather irrelevant

Number of files total, and number of files processed is the key metrics

ATLAS stance on big files vs. lots of files not yet decided

Our input to FTS development & operations

Major topics to address

Database performance and scalability

Consistent configuration

Timely upgrades across all FTS instances

Global scheduling algorithm improvements

Limit enforcement

Fair-sharing per endpoint

Re-prioritisation of transfers

Resurrect steering meetings

Battle-tested OIDC Token support

Commercial cloud support

Improve web interface

Timeout handling for slow transfers

Improved error reasoning & messages

Medium term topics

Bulk methods for tape interaction (HTTP REST API)

Better automatic source selection

Automatic session reuse revisited

Easier debugging of failed FTS transfers

SDN integration and support

Long term topics

Backpressure mechanism from storage to FTS

Labelling of transfers for networks

Network awareness for transfer scheduling

Load balancing across multiple storage endpoints at destination

Community contributions for protocol support

Cross-experiment scheduling

Our input to FTS development & operations

Major topics to address

Database performance and scalability

Consistent configuration

Timely upgrades across all FTS instances

Global scheduling algorithm improvements

Limit enforcement

Fair-sharing per endpoint

Re-prioritisation of transfers

Resurrect steering meetings

Battle-tested OIDC Token support

Commercial cloud support

Improve web interface

Timeout handling for slow transfers

Improved error reasoning & messages

Medium term topics

Bulk methods for tape interaction (HTTP REST API)

Better automatic source selection

points at destination

community contributions for protocol support

Cross-experiment scheduling

Summary

FTS is absolutely essential for ATLAS

Software is stable and efficient

Development and Operations teams are **friendly, diligent, and quick** (even on very minor topics! thanks a lot!)

Strong long-term support of FTS team by CERN IT mgmt is crucial

Long list of topics for continuous collaboration

Data management as a whole is **progressing** at a nice pace Many communities joining in due to our **shared software stack** We look forward to continuing to **work together** in the future!

