

Jozef Stefan Institute, Ljubljana, 27-31st March 2023

FTS Planning Session

Goal of the planning session

- I. Define planning session rhythmicity
- II. Go through list of focus areas
- III. Discuss impromptu topics

FTS - Steering meetings?

Last FTS Steering Meeting: too long ago

Objective: define the new purpose of the Steering meeting

Current situation:

- Actively involved with the big experiments (DOMA[-BDT], ATLAS/CMS + IT-Storage meetings, ad-hoc meetings)
- Not regularly involved with other communities

FTS - Steering meetings?

Last FTS Steering Meeting: too long ago

Objective: define the new purpose of the Steering meeting

Proposal:

- Try out FTS Community Forum (Discord forum, lightweight account needed)
- Regular, semestrial "check-ups" (not more often than every 6 months)
 - Involve communities for a course-correction meeting
 - Half-day, Zoom?
 - Next one due in September 2023
 (exact date to be announced by e-mail: fts3-steering@cern.ch)

FTS - Next areas of focus?

Service operations

True microservice model

Reduce components coupling

Add built-in service protection

Add built-in service health monitoring

Community requests

FTS global config

Aggressive Optimizer

User-friendly Cloud configuration

Improved HTTP(TPC) error reporting

evolution **Project** (High Luminosity LHC

Modernise codebase

Deterministic + Global view scheduler

DMC clients evolution

Transfers for non-WLCG environments

Activity & Priority discussion

Need a way to prioritise between service and stakeholder requests

*Lists not exhaustive

Service Operations

- Current model does not allow for "microservice" model
- Components are coupled by hidden dependencies

Goal:

- Allow each component to be deployed separately
- Permit horizontal scaling of individual components

Plan:

- Each component runs with own config file V
- Remove code assumptions that other components are running on same host \(\otimes \)
- Handle transfer logs centrally from within the software \mathbf{x}

Add built-in service protection

True microservice

Add built-in service health monitoring

Service operations

Service Operations

- System has no concept of protecting itself when stressed
- Example: system never refuses submissions

Goal:

- Make system aware of capacity
- Implement service protection when capacity surpassed

Plan:

- Submission limits X
- Improved memory management
- Database connection robustness

Reduce components coupling

Add built-in service protection

Add built-in service health monitoring

Service Operations

- Service health done indirectly, via logs or database queries
- System cannot report on outcome of last action (scheduling, QoS, etc)

Goal:

- System should be able to provide health indicators
- Allow system to be queried on health indicators

Plan:

- Transform current log-based health metrics into system health state X
- Provide mechanism to guery the Transfer & QoS daemons

True microservice model

Reduce components coupling

Add built-in service protection

Add built-in service health monitoring

Service operations

- An FTS instance can orchestrate transfers far from its own location (e.g.: US-based FTS influencing T0 Tape via multihop)
- Site-specific links must be respected diligently

Goal:

- Config publishing server located centrally
- FTS instances can subscribe to receive central config

Plan:

- Musrt design config subscriber
- Careful implementation to allow easy manual overriding

FTS global config

Aggressive Optimizer

User-friendly Cloud configuration

Improved HTTP(TPC) error reporting

- Optimizer reacts too slowly to abrupt changes
- Optimizer cannot unstuck itself from a bad feedback loop

Goal:

- Optimizer component better models the network throughput and fluctuations
- Optimizer doesn't require admin intervention to recover

Plan:

 Integrate Optimizer zero-gradient model developed by Richard Yang's group Community requests

FTS global config

Aggressive Optimizer

User-friendly Cloud configuration

Improved HTTP(TPC) error reporting

- Cloud transfer configuration is just too confusing (see FTS3: Cloud Storage Transfers talk)
- Many support requests on this topic

Goal:

- Cloud transfer configuration becomes intuitive
- Users can do it themselves, without admin assistance

Plan:

Integrate Eraldo's Cloud Configuration rework

Community requests

FTS global config

Aggressive Optimizer

User-friendly Cloud configuration

Improved HTTP(TPC) error reporting

- HTTP-TPC errors are (many times) too obscure
- Great deal of effort spent on this topic (Grid 1st Line Support)

Goal:

- HTTP-TPC errors are explicit, human-readable and easy to understand
- Allow system to be queried on health indicators

Plan:

- Follow approach of documenting and reporting patterns to storage providers (CMS + DOMA-BDT + FTS)
- Suggestions welcome !!

Community requests

FTS global config

Aggressive Optimizer

User-friendly Cloud configuration

Improved HTTP(TPC) error reporting

- Scalability objectives for HL-LHC
- System must face $1 \rightarrow 2$ orders of magnitude
- Possibly deal with larger files

Goal:

- Horizontally scalable design, where additional hardware = more gain
- Robust handling of larger file transfers (e.g.: 60+ GB)

Plan:

- Investigate other ways of structuring the data \mathbb{Z}
- Improve scheduler algorithm \(\textstyle \)

High Luminosity LHC

Modernise codebase

Deterministic + Global view scheduler

DMC clients evolution

Transfers for non-WLCG environments

- Code consolidation long needed
- Certain production errors could've been avoided with better code scrutiny

Goal:

- Legacy and unused components removed
- Benefit from latest compilers & coding practices

Plan:

- Move compiler to C++17 ✓
- Gradually drop unused components \(\otimes \)
- Replace old and risky library dependencies \(\textstyle \)

Modernise codebase

Deterministic + Global view scheduler

DMC clients evolution

Transfers for non-WLCG environments

- Current scheduler is stochastic
- Scheduler work partitioning model adds a great deal of complexity

Goal:

- Change scheduler algorithm into something that allows better control
- Have a flexible model that can be extended on other scheduling considerations in the future

Plan:

- Investigate a decide-and-dispatch model, with one scheduler and many worker nodes
- Introduce statefulness into scheduling

Project evolution

High Luminosity LHC

Modernise codebase

Deterministic + Global view scheduler

DMC clients evolution

Transfers for non-WLCG environments

Hard-to-maintain and risky code hidden in DMC layers

Goal:

- Davix: drop libneon, keep only libcurl backend
- Gfal2: drop GridFTP plugin
- Gfal2: What about SRM?

Project evolution

High Luminosity LHC

Modernise codebase

Deterministic + Global view scheduler

DMC clients evolution

Transfers for non-WLCG environments

FTS strives to accommodate also non-WLCG communities.

Goal:

- Token implementation not WLCG-bound
- Make FTS appealing to smaller communities as well (those not fortunate enough to run experiment frameworks)

Project evolution

High Luminosity LHC

Modernise codebase

Deterministic + Global view scheduler

DMC clients evolution

Transfers for non-WLCG environments

- Discrepancy into what "Activity" and "Priority" means between experiment framework, FTS layer and storage
- Current model only works per-link

Goal:

- Broader prioritization model, which includes not only links but also storage entities
- Make the prioritization definitions clear and FTS-bound

Project evolution

High Luminosity LHC

Modernise codebase

Deterministic + Global view scheduler

DMC clients evolution

Transfers for non-WLCG environments

Impromptu Topics

- Tokens?
- Kubernetes?
- Something else?

