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ABSTRACT

We present the implementation of binary and ternary neural networks in the hls4ml library, designed
to convert Deep Neural Network Models in electronic circuits, emulated in an FPGA firmware.
Starting from benchmark models trained with full precision, we investigate different strategies to
reduce the layer precision to binary or ternary and we discuss the trade-off between model accuracy
and resource consumption. In addition, we show how an optimal balance between latency and
accuracy can be obtained by retaining full precision on a selected subset of network layers. As an
example, we consider two multi-class classification tasks: digit recognition on the MNIST dataset
and jet identification on simulated proton-proton collisions at the Large Hadron Collider.
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1 Introduction

Field-programmable gate arrays (FPGAs) are one of the most interesting solutions to perform fast inference of Deep
Neural Networks (DNNs). Their design is extremely functional to parallelize the kind of mathematical operations
typical of DNN inference tasks. FPGAs can be programmed, which offers unquestionable advantages in terms of
flexibility, with respect to ASICs. At the same time, they share many advantages offered by ASICs, such as low power
consumption and speed.

Traditionally, FPGAs are used to emulate generic electronic circuits, as a preliminary step towards the design of custom
ASICs or as an alternative to them. For instance, hundreds of FPGAs are used as custom electronic logic to process in
real time the proton-proton collisions at the CERN Large Hadron Collider (LHC). With beams colliding every 25 nsec
and thanks to a built-in buffering system, a typical LHC experiments has O(10) µsec to decide to keep or discard a
given event. This real-time decision-taking system, usually referred to as "L1 trigger", consists in a set of electronic
circuits implementing physics-motivated rule-based selection algorithms. Currently, these algorithms are emulated on
FPGAs, mounted on custom boards. Recently, the possibility of deploying machine learning (ML) algorithms in the L1
trigger electronic logic was explored [1].

In the future, the complexity of LHC collision events is expected to increase, making the L1 selection task much
harder. Since the severe L1 latency constraints prevent the LHC experimental collaborations from deploying complex
rule-based algorithms on the L1 FPGA boards, ML solutions, and in particular DNNs, are currently investigated as
a fast-to-execute approximation of complex rule-based algorithms: one could train a DNN to process a given input
(e.g., energy deposits in a calorimeter) and return the output of an event reconstruction algorithm (e.g., to regress the
energy of the incoming particle that caused these energy deposits or to identify its nature). In order to facilitate the
implementation of this strategy and the deployment of DNNs in the L1 triggers of the LHC experiments, we started
developing a software library, hls4ml, to convert a DNN model into an FPGA firmware through an automatic workflow.
In High Energy Physics, the deployment of DL models on FPGAs has been discussed in the context of the online
data-selection system of the LHC experiments. Solutions based on HLS [2] and VHDL [3] have been considered.
Similar studies and comparable results have been shown in Ref. [4].

The hls4ml design is characterized by two aspects: (i) it relies on high-level synthesis (HLS) back-ends, in order to
allow a fully automatized workflow from a trained model to an FPGA firmware; (ii) it is designed so that the final
outcome is a fully-on-chip logic, which allows to keep the latency within typical values of O(10) µsec. Our ultimate
goal is to support the most popular DNN model ingredients (layers, activation functions, etc.) and an interface to the
most popular DL training libraries, directly (e.g., for TensorFlow [5], Keras [6], and Pytorch [7]) or through the
ONNX [8] interface. The library is under development and many of these ingredients are already supported. While
hls4ml was initially conceived for LHC applications, its potential use cases go well beyond High Energy Physics. In
general, hls4ml provides a user-friendly solution to deploy custom DNN models on FPGAs, used as accelerators or as
electronic-circuit emulators on low-resource computing environments (e.g., drones, self-operating vehicles, etc.).

The main challenge in deploying a DNN model on an FPGA is the limited computational resources. Typically, one
would use large reuse factors to dilute the inference operations across multiple clock cycle, at the price of a larger latency.
A complementary approach consists in compressing the model, e.g., by reducing the amount of operations needed in
the inference step (pruning) or their cost (e.g., quantizing the network to a fixed-point numerical representation). In
a previous publication [2], we showed that pruning and quantization allow to execute simple fully-connected DNN
models with state-of-the-art performance on specific LHC problems within a latency of O(∞′′) nsec, while using only
a small fraction of the FPGA resources. In this paper, we investigate how a similar result could be obtained with binary
and ternary networks [9, 10, 11]. In our development, we followed closely the studies presented in Ref. [12, 10, 13].

This paper is structured as follows: Section 2 introduces the benchmark problems and datasets. Section 3 describes the
different model architectures considered in this study. The optimization of binary and ternary networks in hls4ml is
described in Section 4, while their applications to two benchmark classification problems are shown in Section 5. A
summary and outlook is given in Section 6.

2 Benchmark models and datasets

We consider two benchmark classification problems: a digit recognition problem on the MNIST dataset and the LHC
jet tagging problem discussed in Ref. [2].

The MNIST dataset consists of training+validation (with 60K examples) and a test (with 10K examples) data sets.
Each image is represented as a gray-scale array of 28x28 pixels. To our purpose, we flatten the 2D array to a 1D array,
concatenating each line of the image right to the previous one. The derived 1D array is passed as input to a MLP with
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Figure 1: Network architecture for the MNIST (left) and jet flavour (right) classifiers used as benchmark model in this
study.

an input (output) layer of 784 (10) nodes and three inner layers with 128 nodes each. ReLU activation functions [14]
are used for each inner layer, while the softmax activation function is used for the output layer.

The other benchmark problem consists in classifying jets from a set of 16 physics-motivated high-level features, as
described in Ref. [2]. The model receives as input a vector of 16 quantities and processes them through three layers of
64, 32, and 32 nodes with ReLU activation function. The output layer consists of five nodes, corresponding the five
classes of jets (light quark q, gluon, W boson, Z boson, or top quark).

The architectures of the benchmark MNIST and jet flavour classifiers are illustrated in Fig. 1. Their performance are
shown in Fig. 2, in terms of receiver operating characteristic (ROC) curves and confusion matrices. In addition, we
quote the area under the curve (AUC) for each class. The total accuracy of the MNIST and jet flavour classifier is found
to be 98% and 75%, respectively. The classification performance for the two models are summarized in Table ??.

Class MNIST Class Jet Tagging
AUC Accuracy [%] AUC Accuracy [%]

0 0.9996 99.29 gluon 0.934 761 0.9997 99.12
2 0.9996 97.77 quark 0.898 733 0.9994 97.62
4 0.9996 97.45

W 0.942 745 0.9993 97.42
6 0.9994 98.12

Z 0.934 717 0.9994 97.37
8 0.9991 96.82 top 0.954 829 0.9991 96.63

Table 1: Performance of the MNIST and LHC Jet classifiers used as benchmark models in this study. The by-class
accuracy is defined as the fraction of examples of a given class to be correctly classified, after applying an ArgMax
function to the network output. AUC in MNIST not in percentage and with 4 digits
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Figure 2: Classification performance of the MNIST (top) and jet-flavour (bottom) classifiers used as benchmark model
in this study: ROC curves (left) and normalized confusion matrix (right). AUC in MNIST not in percentage and
with 4 digits; show FPR (in log scale) vs TPR (linear) for both. Maybe put in log scale the temperature scale of
the MNIST confusion matrix
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Figure 3: Binary (left) and ternary (right) tanh activation functions, used in the models described in Section 5.2. the x
axis label is cut. TO BE FIXED

3 Binary and ternary architectures

Binary and ternary networks are extreme examples of quantized neural networks. A network is quantized when the
numerical representation of its parameters is done with a fixed-precision. This precision could be fixed across the full
network or customized for specific components. Quantization allows to reduce the computing resources required to use
a given model for inference and it usually implies little or no cost in terms of performance. In the case of binary and
ternary networks this concept is pushed to extreme. Each element of a binary (ternary) network is forced to assume
values ±1 (±1 or 0). Two- and three-values activation functions (see Fig. 3) are used after each layer, acting as discrete
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Figure 4: The MLP architecture used in this study, consisting in a sequence of repeating blocks, Each block, fully
connected to the previous and following one, consists of a dense layer, a BatchNormalization layer, and the activation
layer. The last block does not have an activation layer.

versions of the tanh function. To help the model training, a BatchNormalization [15] layer is used between the dense
layer and its activation function.

In this work, we apply different binarization/ternarization strategies on multilayer perceptrons (MLPs). The adopted
architecture is shown in Fig. 4. Each model consists of a sequence of blocks, each made of a dense, a BatchNormalization,
and an activation layer. We use of fixed-precision numerical representation and specific activation functions (see Fig. 3),
working in conjunction with the BatchNormalization layers [15]. The latter shifts the output of the dense layers to the
range of values in which the activation function is non-linear, enhancing the network’s capability of modeling non-linear
responses. At the same time (see Section 4, the sequence of BatchNormalization+activation layers can be implemented
at small resource cost, which makes this choice particularly convenient for fast inference on edge.

The full benchmark models, defined before any reduction of the numerical representation of the network parameters,
are designed to solve two multi-class classification tasks: a digit recognition problem on the MNIST dataset; and a
jet tagging problem typical of a particle physics experiment at the LHC. These full models are trained minimizing a
categorical cross entropy. The two benchmark classification tasks are solved minimizing a hinge loss function [?]. The
binarization/ternarization of a given model can be done in different ways, e.g., preserving the model architectures or its
performance. As a consequence, for each benchmark problem we consider seven models:

• Full model: the three-layers MLP

• Full Binarized: a binary version of the Full model, built preserving the model architecture (number of
layers and nodes) while applying the following changes: use a binary representation (±1) for weights and
biases; replace the inner-layer ReLU activation functions with a binary tanh (see Fig. 3); introduce Batch
Normalization layers in between the binary dense layers and the activation functions; remove the soft-max
activation function in the output layer.

• Full Ternarized: a binary version of the Full model, built preserving the model architecture (number of layers
and nodes) while applying the following changes: use a ternary representation (−1, 0, 1) for weights and
biases; replace the inner-layer ReLU activation functions with a ternary hard-max (see Fig. 3); introduce Batch
Normalization layers in between the ternary dense layers and the activation functions; remove the soft-max
activation function in the output layer.

• Best Binary: same structure as the Full Binarized model, but with different number of nodes in each layer.
This model, relevant for the LHC-specific jet classification problem described in Section 2, was optimized
with a Bayesian optimization, finalized to minimize the validation loss in the training process.

• Best Ternary: same structure as the Full Ternarized model, but with the number of nodes per layer chosen
through a Bayesian optimization of the architecture, as for the Best Binary model.

• Hybrid Binary: same as the Full Binary model, but with ReLU activation functions rather than the binary tanh
of Fig. 3.

• Hybrid Ternary: same as the Full Ternary model, but with ReLU activation functions rather than the ternary
tanh of Fig. 3.

The Full model is taken as as a benchmark of ideal performance and the other models represent different strategies
towards a more resource-sparse representation. The Full Binarized and Full Ternarized models are simple translations of
the full model. They are optimal in terms of resource reduction, at the cost of a performance drop. The best models are
designed to match (as close as possible) the performance of the Full model, resulting in a larger resource consumption
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than the Full Binarized and Full Ternarized models. The Hybrid models are a compromise between the two approaches.
The fixed precision conversion is applied only to the weights and biases of the nodes in the dense layers, while ReLU
activation functions are used. Given the relatively small resources used by the ReLU activation, the Hybrid models
allow to reach the same performance of the Full model without inflating the number of nodes.

4 Optimization for FPGA deployment with hls4ml

In order to convert the models described in Sections 2, we rely on the MLP-related functionalities offered by the hls4ml
library, discussed at length in Ref. [2]. In addition to that, we exploit a set of custom implementations, specific of binary
and ternary networks, that allow to speed up the execution of the building-block architecture shown in Fig. 4. did we
take this somewhere or is this our idea? Do we need to cite someone?

Table 2: Left: All possible products between A and B with values constrained to ±1. Right: The corresponding
truth-table when the quantities A and B are each encoded with 1-bit, and the XNOR operation is used for the product.

A B A×B
-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

A B A⊕B
0 0 1
0 1 0
1 0 0
1 1 1

Binary networks use 1-bit for both weights and activations. In this case, the product between two quantities can be
optimised to an extremely lightweight operation. By encoding an arithmetical value of ‘−1’ as ‘0’, the product can
be expressed as an XNOR operation, as shown in Table 2. For models using ternary weights or greater than 1-bit for
activations, FPGA logic is always used rather than DSPs.

The binary and ternary tanh activation functions are implemented by testing the sign - in the case of binary tanh - or
sign and magnitude - for ternary tanh - and yielding the corresponding value ±1 or 0 as seen in Fig. 3. A binary or
ternary tanh activation layer preceded by a Batch Normalization (BN) layer can be further optimized. The usual BN
transformation is:

y =
x− µ√
σ2 + ε

γ + β,

given the mean µ, variance σ2, scale γ, and shift β computed during the network training. For a BN followed by a
binary tanh activation, the sign of y is enough to determine a node output value. To avoid calculating the scaling of x
using FPGA logic, the four BN parameters are used to compute the value of x at which y flips sign. This calculation is
performed at compile time, when the model is converted to an HLS firmware using hls4ml. Similarly, the two values
of x around which the output of the ternary tanh activation changes are also calculated at compile time. In the FPGA,
each node output is then simply compared against these pre-computed thresholds, outputting the corresponding ±1, or
0.

5 Experiments

5.1 Handwritten digits classification

We first evaluate the performance of the HLS neural network implementation for the models described in Section 5.2
with different fixed point precision in steps of 2 bits fixing the number of fractional bits to 10 So in practice I just scan
the number of integer bits. For each case, the minimum precision yielding an accuracy above 90% after quantization
is then chosen to study the latency and resource utilization. The number of bits for each model is reported in Table ??
Maybe put AUCs/accuracy with number of bits in a separate table?. For the full and BNN models, a larger number
of bits would yield a higher accuracy, hence closer to the one obtained in floating point precision with Keras, however,
such choice would also result in an increase in resource utilization: a factor 2 increase in LUTs for the BNN, and a
factor 2 increase in DSPs for the full model.

1) How about having two tables here: one with latency/resources at fixed II/RF and one with the minimum
achievable reuse factor and corresponding latency/resources. However, the minimum achievable reuse factor
needs to be defined (as breakdown point of HLS compiler?)
2) For these tables it might be useful to indicate also the LS resources and the AUC/accuracy after quantization.
Explain what we mean with logic synthesis in the text.
3) Add in the text info on Vivado version, targeted clock (5 ns) and xilinx part (xcvu9p-flga2104-2L-e, virtex
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ultrascale 9 +).
4) Need to describe MaxReLu somewhere.
5) We have never run the bayesian optimization for the MNIST. Shall we? Alternatively, add results for more
neurons (256,512, etc...)?

Table 3: Accuracy and AUCs of the different models before and after quantization for the fixed point precisions chosen
for these studies.

Model Number of bits AUC Accuracy [%] AUC Accuracy [%]
Floating point Quantized

Full 18 0.9991–0.9997 98 0.9922–0.9965 95
BNN 16 0.9869–0.9979 93 0.9823–0.9973 91
TNN 16 0.9921–0.9992 95 0.9918–0.9985 95

Hybrid BNN+ReLU (20 bits) 20 0.9953–0.9990 95 0.9953–0.9990 95
Hybrid TNN+ReLU (20 bits) 20 0.9970–0.9993 96 0.9970–0.9993 96

Hybrid BNN+MaxReLU (18 bits) 18 0.9827–0.9983 95 0.9829–0.9982 95
Hybrid TNN+MaxReLU (18 bits) 18 0.9857–0.9989 96 0.9859–0.9989 96

Table 4: Comparison of accuracy, latency, and resource utilization at fixed II=128 for the models described in Section5.2.
The architecture here is fixed at 784x128x128x128x10.

Model Latency [ns] DSPs [%] FF [%] LUTs [%] BRAMs [%]
Full 2580 16 (17) 7 (7) 18 (14) 50 (33)
BNN 2575 0 (0) 6 (4) 21 (6) 33 (16)
TNN 2560 0 (0) 6 (4) 22 (7) 33 (18)

Hybrid BNN+Relu 2585 4 (5) 5 (8) 27 (17) 41 (20)
Hybrid TNN+Relu 2600 4 (5) 5 (8) 27 (17) 41 (22)

Hybrid BNN+MaxRelu 2590 4 (5) 6 (7) 27 (15) 37 (18)
Hybrid TNN+MaxRelu 2590 4 (5) 6 (7) 27 (16) 37 (20)

Table 5: Comparison of accuracy, timing, and resource utilization from the HLS estimate for the minimum achievable
reuse factor for the models described in Section 5.2. The architecture here is fixed at 784x128x128x128x10. Numbers
in parentheses for the accuracy and AUC correspond to the values obtained after quantization. Numbers in parentheses
for the resources correspond to the values obtained from the logic synthesis. Why the TNN gives two clock cycles
less for same RFs? Because of the zeros? Why the quantized accuracy is higher for the TNN wrt BNN for same
number of bits (16)?

Model II Latency [ns] DSPs [%] FF [%] LUTs [%] BRAMs [%]
Full 28 315 130 (100) 18 (8) 69 (54) 126 (61)
BNN 14 200 0 (0) 5 (7) 155 (18) 46 (16)
TNN 14 190 0 (0) 6 (7) 174 (22) 52 (16)

Hybrid BNN+ReLU 14 210 4 (5) 10 (13) 222 (71) 60 (20)
Hybrid TNN+ReLU 14 215 5 (5) 10 (14) 215 (74) 60 (20)

Hybrid BNN+MaxReLU 14 210 4 (5) 8 (10) 215 (63) 56 (18)
Hybrid TNN+MaxReLU 14 210 4 (5) 8 (10) 216 (64) 56 (18)

After fixing the precision, we perform a scan of the resources as a function of the latency. The latency is controlled by
the reuse factor which can be different among the layers.

5.2 Jet substructure at the LHC

As a second benchmark example, we consider the particle-physics application described in Ref. [2]: given a set of jets
produced in proton-proton collisions at the LHC and a set of 16 physics-motivated quantities, we train a multi-layer
perceptron (MLP) to associate each jet to one of five mutually exclusive classes: quark (q), gluon (g), W -, Z, or top (t)
jets. To this purpose, we train a multi-class classifier with 16 input and 5 output nodes.
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Figure 5: Scan of the resource utilization estimated by the HLS compiler nd by the LS versus latency for the BNN and
full model cases. The TNN gives similar results as the BNN and they are omitted from this plot.

Table 6: Comparison of accuracy, latency, and resource utilization for the models described in Section5.2.

Model Architecture AUC Accuracy Latency DSPs FF LUTs
Full 16x64x32x32x5 90–96% 110 nsec 15% 1% 5%

Full Binarized 16x64x32x32x5 -% -% -% -%
Full Ternarized 16x64x32x32x5 -% -% -% -%

Best Binary 16x448x224x224x5 -% -% -% -%
Best Ternary 16x128x64x64x64x5 89-93% 125 ns 0% 1% 27%

Hybrid Binary 16x128x64x64x5 88-93% -% -% -%
Hybrid Ternary 16x128x64x64x5 88-93% -% -% -%

6 Summary and Outlook

We presented the implementation of binary and ternary networks in the hls4ml library, designed to automatically
convert a given Neural Network model into a firmware of an FPGA card.

Using two benchmark classification examples (hand digit recognition on the MNIST dataset and jet-flavor identification
for the LHC experiments), we discuss different strategies to convert a given model into a binary or a ternary model.

We showed how binary and ternary networks allow to preserve competitive performance (in terms of accuracy) while
drastically reducing the resource utilization on the card and, at the same time, keeping the inference latency at O(nsec).
Model binarization and ternarization are competitive alternatives to alternative compression approaches (e.g., pruning)
and represent the ultimate resource saving in terms of network quantization. They offer a qualitative advantage of
keeping DSP utilization at a minimum, and offer an interesting opportunity to deploy complex architectures on resource
constrained environments, such as the L1 trigger system of a typical collider-physics experiment.
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