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ABSTRACT

Graph neural networks have been shown to achieve excellent performance for several crucial tasks
in particle physics, such as charged particle tracking, jet tagging, and clustering. An important
domain for the application of these networks is the Level-1, FGPA-based trigger, which has strict
latency and resource constraints. We discuss how to design distance-weighted graph networks that
can be executed with less than 1 us latency on an FPGA. To do so, we consider representative tasks
associated to particle reconstruction and identification in a next-generation calorimeter operating at a
particle collider. We use graph architectures developed for these purposes and simplified in order to
match the computing constraints of real-time event processing at the CERN Large Hadron Collider.
The trained models are compressed using pruning and quantization. Using the h1s4ml library, we
convert the compressed models into firmware to be implemented on an FPGA. We show results both
in terms of model accuracy and computing performance.
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1 Introduction

At the CERN Large Hadron Collider, collision data are collected every 25 nsec by a real-time processing system (the
trigger) that filters away uninteresting collision events, based on a set of pre-defined algorithms. The trigger system is
structured in two stages: a level-one trigger (L1T), implemented in the custom electronic of the detector and usually
consisting of logic circuits emulated on field-programmable gate arrays (FPGAs) ; a high-level trigger (HLT), consisting
of a computer farm (possibly powered by parallel accelerators such as FPGAs of GPUs). At the HLT, thanks to an
asynchronous event processing, the accept/reject decision has to be reached with a typical latency of O(100) msec.
At the L1T, a decision has to be taken within O(10) usec. The main limitations are the synchronous nature of the
processing system and the limited size of the memory buffer that pipelines the data of each collision.

While HLT algorithms have a complexity comparable to those used offline to produce the final physics results, a typical
LI1T algorithm consists of a basic set of rules. This allows to respect the latency constraint but it typically affects the
resolution that one can reach. Recently, the deployment of the first Machine Learning (ML) L1T algorithm [1] has
changed this tendency, raising interest in using ML algorithms as fast-to-execute approximations of complex rule-based
solutions. The first example consisted of a big look-up table (LUT) implementing a boosted decision tree. One might
be interested to deploy more complex architectures. At this stage, one is limited by the limited computing resources of
an FPGA card, e.g. the number of digital signal processing units (DSPs).

The hls4ml library was designed to to facilitate the deployment of complex algorithms on FPGAs, having in mind the
specific use case of an LHC L1T '. In this respect, support for graph architectures is an increasingly demanded feature,
given the growing list of examples showing how well graph neural networks (GNNs) can deal with high-energy-physics
(HEP) related tasks [2, 3, 4, 5, 6, 7, 8, 9]. In fact, while the irregular geometry of a typical HEP detector makes the use
of computing vision techniques complicated, GNNs can naturally deal with the sparse and irregular nature of HEP
collision data.

In this work, we show how a graph model could be efficiently deployed on FPGAs to perform inference within
O(1) psec for HEP-related problems. We consider the distance-weighted architectures introduced in Ref. [5] and
designed in order to keep resource consumption under control by reducing as much as possible the number of operations.
For this reasons, and for having shown to perform well on HEP related tasks (particle reconstruction in a calorimeter),
they represent a good candidate to our purpose.

As an example, we consider the same detector geometry of Ref. [5] and two calorimeter-related tasks: identifying the
nature of an incoming particle, given the shape of the energy deposit left in the detector; the clustering of overlapping
energy deposits into particle candidates. On both problems, we first describe a benchmark off-line model, that sets the
best accuracy we can reach for a give problem, regardless of resource constraints at inference time. Then, we discuss
how to compress those models to meet these resource constraints and assess the final inference latency and resource
utilization.

This paper is structured as follows: Section 2 describes the input data. Sections 3 and 4 describes the model architecture,
off-line performance and inference resource utilization after compression, respectively for the PID and cluster problems.
Conclusions are given in Section 5.
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Figure 1: ROC curve for the e/~ /7" particle-identification GarNet model, for the full-precision KERAS implementation
and the low-precision FPGA synthesis (estimated from FPGA emulator).

Latency 55-100 clocks Interval 30-93 clocks
DSP 2.4-5.5k DSP % <44
LUT 88/663k LUT % <13

Block RAM 2/76 MB Block RAM % 13

Table 1: Resource utilization for various configurations of the e/v/7¥ particle-identification GarNet model, synthetized

on a Xilinx Kintex Ultrascale XCKU115, with a clock frequency of 200 MHz.
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Figure 2: Comparison between true showers (left) and reconstructed clusters (right) returned by the GravNet model
described in the text.bf CHANGE THE PLOTS
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