$\alpha_s \rightarrow 0$: easier said than done

Gregory Soyez with M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni and G.Salam (PanScales)

IPhT, CNRS, CEA Saclay

Taming the accuracy of MC generators, CERN, July 3 2020

The challenge: idea

Structure of NLL:

 $\Sigma_{\mathsf{NLL}}(\alpha_{\mathsf{s}}\mathcal{L}, \alpha_{\mathsf{s}}) = e^{g_1(\alpha_{\mathsf{s}}\mathcal{L})\mathcal{L} + g_2(\alpha_{\mathsf{s}}\mathcal{L}) + \dots}$

NLL accuracy test:

$$\frac{\Sigma_{\mathsf{MC}}}{\Sigma_{\mathsf{NLL}}} \stackrel{\alpha_s \to 0}{\to} f(\lambda = \alpha_s L) \stackrel{?}{=} 1$$

Here: discuss challenges associated with $\alpha_s \rightarrow 0$

Say we take $\lambda = \alpha_s L = 0.5$

α_s	L	
0.04	12.5	
0.02	25	
0.01	50	
0.005	100	

• $\alpha_{s} \ll 1 \Rightarrow L \gg 1$

< 4 → <

э

Say we take $\lambda = \alpha_s L = 0.5$

α_{s}	L	$L + \delta L$
0.04	12.5	32.5
0.02	25	45
0.01	50	70
0.005	100	120

• $\alpha_s \ll 1 \Rightarrow L \gg 1$

- Extra room to resolve emissions:
 - \Rightarrow Shower cut should be smaller

< A > < E

$$\Rightarrow$$
 extra $\sqrt{\epsilon}~(\delta L = \log(1/\epsilon))$

Say we take $\lambda = \alpha_s L = 0.5$

α_{s}	L	$L + \delta L$
0.04	12.5	32.5
0.02	25	45
0.01	50	70
0.005	100	120

• $\alpha_s \ll 1 \Rightarrow L \gg 1$

• Extra room to resolve emissions:

 \Rightarrow Shower cut should be smaller

$$\Rightarrow$$
 extra $\sqrt{\epsilon} \ (\delta L = \log(1/\epsilon))$

Challenge 1:

Deal with numbers over large numerical range \Rightarrow precision impaired

- 4 目 ト - 4 日 ト

Say we take $\lambda = \alpha_s L = 0.5$

α_{s}	L	$L + \delta L$
0.04	12.5	32.5
0.02	25	45
0.01	50	70
0.005	100	120

• $\alpha_s \ll 1 \Rightarrow L \gg 1$

• Extra room to resolve emissions:

 \Rightarrow Shower cut should be smaller

$$\Rightarrow$$
 extra $\sqrt{\epsilon} \; (\delta L = \log(1/\epsilon))$

Challenge 1:

Deal with numbers over large numerical range \Rightarrow precision impaired

Challenge 2:

$$g_1(\alpha_s L)L \gg 1 \Rightarrow \Sigma(\lambda, \alpha_s) \ll 1$$

 \Rightarrow no events with standard "unweighted" techniques

(e.g.
$$\lambda = 0.5$$
, $\alpha_s = 0.005 \Rightarrow \Sigma_{y_{23}}(L) \sim 10^{-29}$)

э

< □ > < □ > < □ > < □ > < □ > < □ >

Sudakov suppression: $\beta_{shower} = \beta_{obs}$ (easy case)

Estimate contribution $e^{L_{approx}}$ to obs PanScales: $\begin{cases} L_{approx} = \ln k_t - \beta_{obs} |\eta|, \\ \eta = \overline{\eta} + \frac{1}{\beta} \ln \rho \end{cases}$

consider bins in L_{approx} focus on a single bin

Sudakov suppression: $\beta_{shower} = \beta_{obs}$ (easy case)

Estimate contribution
$$e^{L_{approx}}$$
 to obs
PanScales:
$$\begin{cases} L_{approx} = \ln k_t - \beta_{obs} |\eta|, \\ \eta = \overline{\eta} + \frac{1}{\beta} \ln \rho \end{cases}$$

Element 1: weights

- Generate first emission in given bin
- Weight corresponding to Sudakov above the considered bin

Sudakov suppression: $\beta_{shower} = \beta_{obs}$ (easy case)

Estimate contribution
$$e^{L_{approx}}$$
 to obs
PanScales:
$$\begin{cases} L_{approx} = \ln k_t - \beta_{obs} |\eta|, \\ \eta = \overline{\eta} + \frac{1}{\beta} \ln \rho \end{cases}$$

Element 1: weights

- Generate first emission in given bin
- Weight corresponding to Sudakov above the considered bin

Element 2: dynamic cut-off

cut shower at factor $e^{-\delta L}$ below largest contribution

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Sudakov suppression: $\beta_{shower} \neq \beta_{obs}$ (harder case)

Estimate contribution
$$e^{L_{approx}}$$
 to obs
PanScales:
$$\begin{cases} L_{approx} = \ln k_t - \beta_{obs} |\eta|, \\ \eta = \bar{\eta} + \frac{1}{\beta} \ln \rho \end{cases}$$

Element 1: weights+event veto

- Generate first emission in given bin
- Weight corresponding to Sudakov above the considered bin

• Veto event if
$$L_{approx} > L_{approx}^{(min)}$$

Element 2: emission veto

veto emissions at factor $e^{-\delta L}$ below largest contribution

Numerical range

• For most shapes, $\sqrt{\epsilon} = \sqrt{\epsilon_{\text{double}}} \approx 10^{-8} \ (\delta L \approx 18)$ does the job (covered range between $\sqrt{\epsilon}L$ and L)

< A > <

Numerical range

- For most shapes, $\sqrt{\epsilon} = \sqrt{\epsilon_{\text{double}}} \approx 10^{-8} \ (\delta L \approx 18)$ does the job (covered range between $\sqrt{\epsilon}L$ and L)
- For k_t subjet multiplicity, need full clustering \Rightarrow need full kinematic range
 - \Rightarrow rely on higher-precision types

type	precision		slow-down
double	$\epsilon pprox 10^{-16}$	$L \approx 37$	1
ddreal	$\epsilon pprox 10^{-31}$	$L \approx 71$	10
qdreal	$\epsilon pprox 10^{-64}$	$L \approx 147$	141

Just OK for our needs but non-negligible time cost (Note that multiplicity is a series in $\sqrt{\alpha_s}L$)

Numerical range

- For most shapes, $\sqrt{\epsilon} = \sqrt{\epsilon_{\text{double}}} \approx 10^{-8} \ (\delta L \approx 18)$ does the job (covered range between $\sqrt{\epsilon}L$ and L)
- For k_t subjet multiplicity, need full clustering
 ⇒ need full kinematic range
 - \Rightarrow rely on higher-precision types

type	precision		slow-down
double	$\epsilon pprox 10^{-16}$	$L \approx 37$	1
ddreal	$\epsilon pprox 10^{-31}$	$L \approx 71$	10
qdreal	$\epsilon pprox 10^{-64}$	$L \approx 147$	141

Just OK for our needs but non-negligible time cost (Note that multiplicity is a series in $\sqrt{\alpha_s}L$)

• For E_t in a slice, naive δL does not work; use angular cut-off instead.

- From n values of α_S (typically n = 3), determine a polynomial of degree n − 1
- The constant term is the extrapolation up to $\mathcal{O}(\alpha_s^n)$
- Statistical uncertainties easily propagated
- \bullet Can try to get an estimate of "systematic" uncertainties using different sets of α_{s} values

(mostly helpful for multiplicity where convergence was slower)

Other considerations

Computation of angles

- computing " $1 \cos \theta$ " has precision $\sqrt{\epsilon}$ in collinear limit.
- ullet switch to a cross product at small angles to bring down to ϵ
- \bullet alignment along the z axis \Rightarrow angles down to $\epsilon \theta_{\max}$
- benefit from precision at various stages, e.g. precise determination of the thrust axis

Multiplicities can get large

- $N \propto \exp(\sqrt{\alpha_s L^2}) \propto \exp(\sqrt{\lambda L})$ blows up if $L \gg 1$ at fixed λ
- currently limited by previous prescriptions but speed useful nonetheless
- adopted a "Roulette Wheel" strategy for dipole choice
- fast observable calculations (e.g. clustering)