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The challenge: idea
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Structure of NLL:

ΣNLL(αsL, αs) = eg1(αsL)L+g2(αsL)+...

NLL accuracy test:

ΣMC

ΣNLL

αs→0→ f (λ = αsL)
?
= 1

Here: discuss challenges
associated with αs → 0
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The challenge: numbers

Say we take λ = αsL = 0.5

αs L

0.04 12.5
0.02 25
0.01 50

0.005 100

αs � 1 ⇒ L� 1

Extra room to resolve emissions:
⇒ Shower cut should be smaller
⇒ extra

√
ε (δL = log(1/ε))
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ε (δL = log(1/ε))

Challenge 1:

Deal with numbers over large numerical range ⇒ precision impaired

Challenge 2:

g1(αsL)L� 1 ⇒ Σ(λ, αs)� 1
⇒ no events with standard “unweighted” techniques

(e.g. λ = 0.5, αs = 0.005 ⇒ Σy23 (L) ∼ 10−29)
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Sudakov suppression: βshower = βobs (easy case)

chosen Lapprox bin

w =Sudakov

δL

Estimate contribution eLapprox to obs

PanScales:

{
Lapprox = ln kt − βobs|η|,
η = η̄ + 1

β ln ρ

consider bins in Lapprox

focus on a single bin

Element 1: weights

Generate first emission in given bin

Weight corresponding to Sudakov
above the considered bin

Element 2: dynamic cut-off

cut shower at factor e−δL

below largest contribution
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Sudakov suppression: βshower 6= βobs (harder case)

chosen Lapprox bin

w =Sudakov

veto event

δL

veto emissions

βshower = 1/2

βobs = 0

lnv
(min)

L
(min)
approx

Estimate contribution eLapprox to obs

PanScales:

{
Lapprox = ln kt − βobs|η|,
η = η̄ + 1

β ln ρ

Element 1: weights+event veto

Generate first emission in given bin

Weight corresponding to Sudakov
above the considered bin

Veto event if Lapprox > L
(min)
approx

Element 2: emission veto

veto emissions at factor e−δL

below largest contribution
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Numerical range

For most shapes,
√
ε =
√
εdouble ≈ 10−8 (δL ≈ 18) does the job

(covered range between
√
εL and L)

For kt subjet multiplicity, need full clustering
⇒ need full kinematic range
⇒ rely on higher-precision types

type precision slow-down

double ε ≈ 10−16 L ≈ 37 1
ddreal ε ≈ 10−31 L ≈ 71 10
qdreal ε ≈ 10−64 L ≈ 147 141

Just OK for our needs but non-negligible time cost
(Note that multiplicity is a series in

√
αsL)

For Et in a slice, naive δL does not work; use angular cut-off instead.
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Other considerations: extrapolation to 0

From n values of αS (typically n = 3), determine a polynomial of
degree n − 1

The constant term is the extrapolation up to O(αn
s )

Statistical uncertainties easily propagated

Can try to get an estimate of “systematic” uncertainties using
different sets of αs values
(mostly helpful for multiplicity where convergence was slower)
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Other considerations

Computation of angles

computing “1− cos θ” has precision
√
ε in collinear limit.

switch to a cross product at small angles to bring down to ε

alignment along the z axis ⇒ angles down to εθmax

benefit from precision at various stages, e.g. precise determination of
the thrust axis

Multiplicities can get large

N ∝ exp(
√
αsL2) ∝ exp(

√
λL) blows up if L� 1 at fixed λ

currently limited by previous prescriptions but speed useful nonetheless

adopted a “Roulette Wheel” strategy for dipole choice

fast observable calculations (e.g. clustering)
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