\(\alpha_s \rightarrow 0: \) easier said than done

Gregory Soyez
with M.Dasgupta, F.Dreyer, K.Hamilton, P.Monni and G.Salam (PanScales)

IPhT, CNRS, CEA Saclay

Taming the accuracy of MC generators, CERN, July 3 2020
Structure of NLL:

$$\Sigma_{\text{NLL}}(\alpha_s L, \alpha_s) = e^{g_1(\alpha_s L)L + g_2(\alpha_s L) + ...}$$

NLL accuracy test:

$$\frac{\Sigma_{\text{MC}}}{\Sigma_{\text{NLL}}} \xrightarrow{\alpha_s \to 0} f(\lambda = \alpha_s L) \approx 1$$

Here: discuss challenges associated with $\alpha_s \to 0$
Say we take $\lambda = \alpha_s L = 0.5$

<table>
<thead>
<tr>
<th>α_s</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>12.5</td>
</tr>
<tr>
<td>0.02</td>
<td>25</td>
</tr>
<tr>
<td>0.01</td>
<td>50</td>
</tr>
<tr>
<td>0.005</td>
<td>100</td>
</tr>
</tbody>
</table>

$\alpha_s \ll 1 \Rightarrow L \gg 1$
The challenge: numbers

Say we take $\lambda = \alpha_s L = 0.5$

<table>
<thead>
<tr>
<th>α_s</th>
<th>L</th>
<th>$L + \delta L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>12.5</td>
<td>32.5</td>
</tr>
<tr>
<td>0.02</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>0.01</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>0.005</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

- $\alpha_s \ll 1 \Rightarrow L \gg 1$
- Extra room to resolve emissions:
 - \Rightarrow Shower cut should be smaller
 - \Rightarrow extra $\sqrt{\epsilon}$ ($\delta L = \log(1/\epsilon)$)
Say we take $\lambda = \alpha_s L = 0.5$

<table>
<thead>
<tr>
<th>α_s</th>
<th>L</th>
<th>$L + \delta L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>12.5</td>
<td>32.5</td>
</tr>
<tr>
<td>0.02</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>0.01</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>0.005</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

- $\alpha_s \ll 1 \Rightarrow L \gg 1$
- Extra room to resolve emissions:
 - Shower cut should be smaller
 - extra $\sqrt{\epsilon}$ ($\delta L = \log(1/\epsilon)$)

Challenge 1:

Deal with numbers over large numerical range \Rightarrow precision impaired
The challenge: numbers

Say we take \(\lambda = \alpha_s L = 0.5 \)

<table>
<thead>
<tr>
<th>(\alpha_s)</th>
<th>(L)</th>
<th>(L + \delta L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>12.5</td>
<td>32.5</td>
</tr>
<tr>
<td>0.02</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>0.01</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>0.005</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

- \(\alpha_s \ll 1 \Rightarrow L \gg 1 \)
- Extra room to resolve emissions:
 - \(\Rightarrow \) Shower cut should be smaller
 - \(\Rightarrow \) extra \(\sqrt{\epsilon} (\delta L = \log(1/\epsilon)) \)

Challenge 1:
Deal with numbers over large numerical range \(\Rightarrow \) precision impaired

Challenge 2:

\[
g_1(\alpha_s L) L \gg 1 \Rightarrow \sum(\lambda, \alpha_s) \ll 1
\]

\(\Rightarrow \) no events with standard “unweighted” techniques

(e.g. \(\lambda = 0.5, \alpha_s = 0.005 \Rightarrow \sum_{y23}(L) \sim 10^{-29} \))
Sudakov suppression: $\beta_{\text{shower}} = \beta_{\text{obs}}$ (easy case)

Estimate contribution $e^{L_{\text{approx}}}$ to obs

PanScales: \[
\begin{align*}
L_{\text{approx}} &= \ln k_t - \beta_{\text{obs}}|\eta|, \\
\eta &= \bar{\eta} + \frac{1}{\beta} \ln \rho
\end{align*}
\]

consider bins in L_{approx}

focus on a single bin
Sudakov suppression: $\beta_{\text{shower}} = \beta_{\text{obs}}$ (easy case)

Estimate contribution $e^{L_{\text{approx}}}$ to obs

PanScales:

$$\begin{align*}
L_{\text{approx}} &= \ln k_t - \beta_{\text{obs}}|\eta|, \\
\eta &= \bar{\eta} + \frac{1}{\beta} \ln \rho
\end{align*}$$

Element 1: weights

- Generate first emission in given bin
- Weight corresponding to Sudakov above the considered bin
Sudakov suppression: $\beta_{\text{shower}} = \beta_{\text{obs}}$ (easy case)

\[
\hat{w} = \text{Sudakov}
\]

\[w = \text{Sudakov}
\]

\[\text{chosen } L_{\text{approx}} \text{ bin}
\]

Estimate contribution $e^{L_{\text{approx}}}$ to obs

PanScales:

\[
\begin{cases}
L_{\text{approx}} = \ln k_t - \beta_{\text{obs}} |\eta|,
\
\eta = \bar{\eta} + \frac{1}{\beta} \ln \rho
\end{cases}
\]

Element 1: weights

- Generate first emission in given bin
- Weight corresponding to Sudakov above the considered bin

Element 2: dynamic cut-off

- Cut shower at factor $e^{-\delta L}$ below largest contribution

Gregory Soyez (PanScales)
Sudakov suppression: $\beta_{\text{shower}} \neq \beta_{\text{obs}}$ (harder case)

$$\beta_{\text{shower}} = 1/2$$
$$\beta_{\text{obs}} = 0$$

Estimate contribution $e^{L_{\text{approx}}}$ to obs

PanScales:

$$L_{\text{approx}} = \ln k_t - \beta_{\text{obs}} |\eta|,$$
$$\eta = \bar{\eta} + \frac{1}{\beta} \ln \rho$$

Element 1: weights + event veto
- Generate first emission in given bin
- Weight corresponding to Sudakov above the considered bin
- Veto event if $L_{\text{approx}} > L_{\text{approx}}^{(\text{min})}$

Element 2: emission veto
- Veto emissions at factor $e^{-\delta L}$ below largest contribution
For most shapes, $\sqrt{\epsilon} = \sqrt{\epsilon_{\text{double}}} \approx 10^{-8}$ ($\delta L \approx 18$) does the job (covered range between $\sqrt{\epsilon}L$ and L)
Numerical range

- For most shapes, $\sqrt{\epsilon} = \sqrt{\epsilon_{\text{double}}} \approx 10^{-8}$ ($\delta L \approx 18$) does the job (covered range between $\sqrt{\epsilon}L$ and L)

- For k_t subjet multiplicity, need full clustering
 \[\Rightarrow \] need full kinematic range
 \[\Rightarrow \] rely on higher-precision types

<table>
<thead>
<tr>
<th>type</th>
<th>precision</th>
<th>slow-down</th>
</tr>
</thead>
<tbody>
<tr>
<td>double</td>
<td>$\epsilon \approx 10^{-16}$</td>
<td>$L \approx 37$</td>
</tr>
<tr>
<td>ddreal</td>
<td>$\epsilon \approx 10^{-31}$</td>
<td>$L \approx 71$</td>
</tr>
<tr>
<td>qdreal</td>
<td>$\epsilon \approx 10^{-64}$</td>
<td>$L \approx 147$</td>
</tr>
</tbody>
</table>

Just OK for our needs but non-negligible time cost
(Note that multiplicity is a series in $\sqrt{\alpha_s}L$)
For most shapes, $\sqrt{\epsilon} = \sqrt{\epsilon_{\text{double}}} \approx 10^{-8}$ ($\delta L \approx 18$) does the job (covered range between $\sqrt{\epsilon}L$ and L).

For k_t subjet multiplicity, need full clustering
 \Rightarrow need full kinematic range
 \Rightarrow rely on higher-precision types

<table>
<thead>
<tr>
<th>type</th>
<th>precision</th>
<th>slow-down</th>
</tr>
</thead>
<tbody>
<tr>
<td>double</td>
<td>$\epsilon \approx 10^{-16}$</td>
<td>$L \approx 37$</td>
</tr>
<tr>
<td>ddreal</td>
<td>$\epsilon \approx 10^{-31}$</td>
<td>$L \approx 71$</td>
</tr>
<tr>
<td>qdreal</td>
<td>$\epsilon \approx 10^{-64}$</td>
<td>$L \approx 147$</td>
</tr>
</tbody>
</table>

Just OK for our needs but non-negligible time cost
(Note that multiplicity is a series in $\sqrt{\alpha_s L}$)

For E_t in a slice, naive δL does not work; use angular cut-off instead.
Other considerations: extrapolation to 0

- From \(n \) values of \(\alpha_S \) (typically \(n = 3 \)), determine a polynomial of degree \(n - 1 \)
- The constant term is the extrapolation up to \(O(\alpha_S^n) \)
- Statistical uncertainties easily propagated
- Can try to get an estimate of “systematic” uncertainties using different sets of \(\alpha_S \) values
 (mostly helpful for multiplicity where convergence was slower)
Computation of angles

- computing “1 − cos θ” has precision $\sqrt{\epsilon}$ in collinear limit.
- switch to a cross product at small angles to bring down to ϵ
- alignment along the z axis \Rightarrow angles down to $\epsilon \theta_{\text{max}}$
- benefit from precision at various stages, e.g. precise determination of the thrust axis

Multiplicities can get large

- $N \propto \exp(\sqrt{\alpha_s L^2}) \propto \exp(\sqrt{\lambda L})$ blows up if $L \gg 1$ at fixed λ
- currently limited by previous prescriptions but speed useful nonetheless
- adopted a “Roulette Wheel” strategy for dipole choice
- fast observable calculations (e.g. clustering)