Minimum Bias and Underlying Event Working Group 31 May 2010

MINIMUM-BIAS MEASUREMENTS WITH ALICE

C. Zampolli

Outline

- ALICE Minimum-Bias Physics Program
 - Charged-particle density
 - Charged-particle multiplicity distributions
 - Charged-particle transverse momentum spectra
 - □ p/p
 - Identified charged hadron spectra and yields
 - Strange particle production
 - Charm production, identical particle correlations, azimuthal correlations...
- Work in progress
- Conclusions

Charged-particle η density - I 900 GeV 2.36 TeV

arXiv:1004.3034

dN _{ch} /dη in η < 0.5	0.9	TeV	2.36 TeV		
ALICE, CMS: stat. and syst. uncertainty added quadratically	INEL	NSD	INEL	NSD	
ALICE arXiv:1004.3034	3.02 ± 0.07	3.58 ± 0.11	3.77 ± 0.23	4.43 ± 0.16	
ALICE EPJC65:111 (2010)	3.10 ± 0.26	3.51 ± 0.29			
CMS JHEP 02 (2010) 041		3.48 ± 0.13		4.47 ± 0.16	
UA5 Z. Phys. C33 1 (1986)	3.09 ± 0.05*	3.43 ± 0.05*			
C. Zampolli 5/31/2010, MB & UE 3					

Charged-particle η density - II

- Hadron- level definition used (INEL>o)
- The INEL>o requirement selects 80% of the MB_OR (1 track in 8 η units) events in 7 TeV data
- Model dependent corrections and systematic error minimized

arXiv:1004.3514

increase from 0.9 to 7 TeV ~ 57% (NSD) – but models predict ~35-45%

Multiplicity Distributions - I

• Multiplicity distributions of charged particles in 3 η -intervals ($|\eta| < 0.5, 1, 1.3$)

• Very gloppical verse fut cut thip result is the asofelding to UA5 in $|\eta| < 0.5$

• Comparison with different models – tail increases faster

Multiplicity Distributions - II

energy evolution of multiplicity distributions – KNO scaling variables

reduced moments: C_q = <N^q>/<N>^q

Multiplicity Distributions - III

Probability $P(N_{ch})$ Probability $P(N_{ch})$ ALICE D6T (109) ATLAS-CSC (306) Perugia-0 (320) PHOJET $\sqrt{s} = 7 \text{ TeV} (x 100)$ 10⁻³ 10⁻¹ 10-2 10-4 $\sqrt{s} = 7 \text{ TeV}$ INEL>0 10⁻⁵ √s = 2.36 TeV (x 10) 10⁻³ |η| < 1 Ratio Data / MC 0.1 2.0 $\sqrt{s} = 0.9 \text{ TeV} (x 1)$ 10-4 ALICE INEL>0 10⁻⁵ |η| < 1 20 40 60 n 20 60 0 40 Multiplicity N_{ch} Multiplicity N_{ch}

arXiv:1004.3514

 Good description from NBD for all three energies

 Comparison with different MC models not satisfactory – increase at high multiplicity not reproduced

7TeV

Transverse Momentum Distribution - I

Comparison with ATLAS and CMS

Comparison with UA1

Transverse Momentum Distribution II

C. Zampolli 5/31/2010, MB & UE

10

Mean p_T vs Multiplicity – I

C. Zampolli 5/31/2010, MB & UE

Mean p_T vs Multiplicity – II

р_т > 500 MeV

p_T > 150 MeV

Identified Charged Hadrons

- Charged kaons identified in the TPC in addition to their on flight decays
- Agreement between dE/dx, TOF and kinks

- Charged hadron identification in different p_T ranged performed with different detectors:
 - TPC and TOF agreement within a few percent (no normalization needed)
 - TPC and ITS not far

Antibaryon to Baryon Asymmetry

- baryon transfer through large Δy
- string-junction models different predictions
- value close to unity little place for nonstandard mechanism

MC Matching the First ALICE Measurements

S. Vallero, ALICE Physics Week 2010, Paris

Results at $\sqrt{s} = 900 \text{ GeV}$:

MC under-estimates data

- MC over-estimates data
- Reasonable agreement

MC/TUNE	D6T	Perugia0	CSC	DW	CW	Phojet	
η ⁽⁴⁾	-20%	-17%	3%			-2%	INEL>0
N _{ch} ⁽⁵⁾	N _{ch} >10	N _{ch} >5	N _{ch} >15			N _{ch} >10	INEL
P T ⁽⁶⁾		p _T >4Gev	p _T >1GeV			p _T >1GeV	INEL
<p_7>⁽⁶⁾</p_7>							INEL
UE ⁽⁷⁾	ALICE/CMS			CMS	CMS		INEL

 \rightarrow Multiplicity measurements: PHOJET preferred \rightarrow p_T measurements: PYTHIA-Perugia0 preferred

MC Matching the First ALICE Measurements

S. Vallero, ALICE Physics Week 2010, Paris

Results at $\sqrt{s} = 2.36$ TeV:

- MC under-estimates data
- MC over -estimates data
- Reasonable agreement

MC/TUNE	D6T	Perugia 0	CSC	PHOJET	
η ⁽⁴⁾	-24%	-21%	-2%	-8%	
N _{ch} ⁽⁵⁾	N _{ch} >10	N _{ch} >5	N _{ch} >20	N _{ch} >15	Slightly underestimates →

Results at $\sqrt{s} = 7$ TeV:

MC/TUNE	D6T	Perugia 0	CSC	PHOJET
η ⁽⁴⁾	-27%	-24%	-4%	-17%
UE				

→ Multiplicity measurement: PYTHIA-CSC and PHOJET preferred

Strangeness Production

C. Zampolli 5/31/2010, MB & UE

K*0 ,π⁰,η,D⁰ J/Ψ

Work ongoing

- Diffraction @ 7 TeV
- Study in the increase in multiplicity in different p_T regions
- dN_{ch}/dη for different p_T cuts in different event classes (for MC tuning)
 - Event class: INEL>o_{|η|<0.8, p_T > 0.15, 0.5, 0.9 GeV}
 - Tracks: |η|<0.8, p_T > 0.15, 0.5, 0.9 GeV
 - → well underway
- Many other analyses ongoing (identical particle correlations, azimuthal correlations, event structure, π^o spectra...)

Conclusion

- The ALICE Minimum Bias program is very rich
 - 3 papers already published,
 - some under internal review or in draft,
 - together with other ongoing analyses
- Monte Carlo models don't reproduce data in a satisfactory way
- More investigation and more data needed

People

- H. Appelshaeuser
- M. Broz
- P. Christakoglou
- J.F. Grosse-Oetringhaus
- A. Kalweit
- F. Noferini
- S. Vallero
- C.Z.
- ...and many more...