CMS Minimum Bias and Diffraction Measurements

Gábor I. Veres (CERN)

Minimum Bias and Underlying Event Working Group Meeting CERN, 31 May, 2010

Talks related to CMS data today

- Minimum bias measurements* and observation of diffractive events (G.V.)
- Underlying event** studies (Klaus Rabbertz)
- Correlation* analyses clusters, BEC (Wei Li)
- Early MB&UE
 measurements –
 what have
 we learned?
 (Rick Field)
- * submitted to PRL** approved, will be submitted soon

CERN

Introduction

- The majority of the pp collisions are soft, with no hard parton scattering
- Modeling soft hadron production is done phenomenologically (hadronization, fragmentation, ...)
- Various processes: elastic, single-diffractive (SD), double-diffractive (DD) + non-diffractive: NSD
- dN/dη and dN/dp_T distributions of primary charged hadrons are measured, per NSD event
- 7 TeV: results at the highest-ever collision energy
- Important for high-luminosity LHC runs with event pileup
- Also important as a reference for heavy ion collisions

LHC startup at 7 TeV

- First collisions at 7 TeV: 30 March, 2010 ("media event")
- First preliminary dN/dη results ready in a few minutes
- The 7 TeV publication on dN/dη uses 1.1 μb⁻¹ (less than one hour) of the first, "media event" run

MB&UE WG, 31 May, 2010

Trigger and event selection

- Collision rate ≈ 50 Hz
 "pileup" ≈ 0.3% (neglected)
- Trigger: any hit in the Beam Scintillator Counters (BSC, 3.23 < |η| < 4.65) AND a filled bunch passing the beam pickups (BPTX)
- Off-line event selection:
 - >3 GeV total energy on both sides in the Forward Calorimeter (HF 2.9 < $|\eta|$ < 5.2)
 - Beam Halo rejection (BSC)
 - Dedicated beam background rejection
 - Collision vertex

55100 events remain after all cuts

NSD: ~86 % SD: ~27 % DD: ~34 %

5

Rejecting beam-gas events

Run 124023 -- BPTX_AND, no BSC halo, BSC_OR, pixel vertex, HF coinc

Vertex-cluster compatibility: Ratio of #clusters in the V shape and #clusters in the V-shape offset by ± 10 cm

Beam-scraping events have a lot of pixel hits but ill-defined vertex

CERNY

Remaining beam-gas fraction: 2x10⁻⁵

MB&UE WG, 31 May, 2010

6

Trigger efficiencies

Based on event generators (MC)

	PYTHIA				PHOJET			
Energy	$0.9 { m TeV}$		2.36 TeV		$0.9 \mathrm{TeV}$		$2.36 { m TeV}$	
	Frac.	Sel. Eff.	Frac.	Sel. Eff.	Frac.	Sel. Eff.	Frac.	Sel. Eff.
SD	22.5%	16.1%	21.0%	21.8%	18.9%	20.1%	16.2%	25.1%
DD	12.3%	35.0%	12.8%	33.8%	8.4%	53.8%	7.3%	50.0%
ND	65.2%	95.2%	66.2%	96.4%	72.7%	94.7%	76.5%	96.5%
NSD	77.5%	85.6%	79.0%	86.2%	81.1%	90.5%	83.8%	92.4%

7 Te\	PY	PHOJET		
	Frac.	Sel. eff.	Frac.	Sel. eff.
SD	19.2%	26.7%	13.8%	30.7%
DD	12.9%	33.6%	6.6%	48.3%
ND	67.9%	96.4%	79.6%	97.1%
NSD	80.8%	86.3%	86.2%	93.4%

≈7% of our selected events are single diffractive

Estimating the diffractive component from data

The HF calorimeter data is used to fit the SD+DD fraction in data using PYTHIA event shapes. PHOJET was also studied similarly.

Detector performance

- The CMS silicon pixel and strip tracker detectors were used
- Pixels: three 53.3 cm long layers with radii 4.4, 7.3, 10.2 cm
- >97% of all channels were operational, hit efficiency optimized

The energy loss in the tracker layers well described by MC

 $\int_{20}^{0} \int_{20}^{2} \int_{20}^{2$

CMS

ata 0.9 TeV

Data 2.36 TeV

HIA 0.9 TeV

PYTHIA 2.36 TeV

dE/dx information in the pixels

Excellent agreement with simulations

CERN

Cluster counting method

- Counting hits (clusters of pixels) in the pixel barrel layers
- Cluster length ~ $|sinh(\eta)|$
- Shorter clusters are eliminated (loopers, secondaries)
- Corrections for loopers, weak decays, secondaries
- Independent result for all 3 layers
- Immune to detector misalignment
- Sensitive to beam background
- Note: our detector is noise-free!

Pixel cluster length along the beam direction as a function of η . The solid line shows the cut applied.

CERN

 $p_{T}\mbox{-}reach$: down to 30 MeV/c

Tracklet method

- Tracklets: pairs of clusters on different pixel barrel layers
- The $\Delta\eta$ and $\Delta\phi$ correlations are used to separate the signal
- A side-band in Δφ is used to subtract combinatorial background
- Corrections for efficiency, weak decays, secondaries
- Independent result for all 3
 layer pairs
- Less sensitive to beam background

The $\Delta\eta$ distribution of the two clusters of the tracklets

CERN

 p_T -reach: down to 50 MeV/c

MB&UE WG, 31 May, 2010

Tracking method

- Uses all pixel and strip layers
- Builds particle trajectories iteratively
- Low fake rate achieved with cleaning based on cluster shapes
- Primary vertex reconstructed from tracks
 - agglomerative vertexing
- Compatibility with beam spot and primary vertex required
- Immune to background
- More sensitive to beam spot position and detector alignment

$p_{T}\text{-}\text{reach}$: down to 100 MeV/c

Results: p_T –distribution at 7 TeV

Measured down to 150 MeV Important: turn-over of the yields

Fit with the Tsallis-function:

$$E\frac{d^3N_{\rm ch}}{dp^3} = \frac{1}{2\pi p_T} \frac{E}{p} \frac{d^2N_{\rm ch}}{d\eta dp_T} = C(n, T, m) \frac{dN_{\rm ch}}{dy} \left(1 + \frac{E_T}{nT}\right)^{-n}$$

Behavior of the function:

- exponential at low p_T
- power-law at high p_T

$$< p_T > = 545 \pm 5(stat) \pm 15(syst) MeV/c$$

Differential yield of charged hadrons in the range $|\eta|$ <2.4 The η bins are shifted by six units vertically.

p_T-distribution at 7 TeV

- The transverse-momentum distribution of charged hadrons was measured up to 6 GeV/c.
- Well described by the Tsallis-function combining a low- p_T exponential with a high- p_T tail
- With increasing energy, the p_T -spectrum gets "harder" (as expected)

Measured yield of charged hadrons for $|\eta| < 2.4$, fit with the Tsallis function.

 $dN_{ch}/d\eta$ distributions averaged over the cluster counting, tracklet and global track methods and symmetrized in η . The shaded band represents systematic uncertainties.

CERNY

Results: energy dependence

Collision energy dependence of average transverse momentum.

Charged particle pseudorapidity density as a function of collision energy.

(ERN)

Comparisons with models, MCs

(ERN)

Diffractive events in CMS

- Acceptance for single diffractive events is high enough to clearly observe them
- The acceptance is clearly model-dependent (event multiplicity and topology)
- The CMS calorimeters are used with coverage of -5<η<5

CERN

Observation of SD events I.

Observation of SD events II.

Conclusions

- CMS has published three **papers** on Minimum Bias data so far:
 - dN/d η and dN/dp_T at 0.9 and 2.36 TeV
 - dN/d\eta and dN/dp_T at 7 TeV
 - Bose-Einstein Correlations
- CMS has used its calorimeters (10 units of η) to observe single-diffractive events
- Other upcoming results/publications:
 - Underlying event studies
 - Cluster properties in two-particle correlations
 - Multiplicity distributions, <p_T> vs multiplicity, KNO scaling
 - Many other topics
- CMS is an excellent detector to study minimum bias physics and diffraction (large coverage, MB triggers, low p_T-reach)
- CMS analysis groups are also working on **MBUEWG recommendations** on event and track selections to compare between experiments
- Exciting **prospects** to learn about multiparticle production, soft QCD, UE!

