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Abstract—Fundamental properties of two electrostatically in-
teracting single-electron lines (SEL) are determined from a min-
imalistic tight-binding model. The lines are represented by a
chain of coupled quantum wells that could be implemented in
a mainstream nanoscale CMOS process technology and tuned
electrostatically by DC or AC voltage biases. The obtained results
show an essential qualitative difference with two capacitively
coupled classical electrical lines. The derived equations and
their solutions prove that the two coupled SET lines can create
an entanglement between electrons. The correlation function
characterizing the correlation/anticorrelation in electron position
is introduced both in quantum and classical descriptions of
capacitively coupled SELs. The quantum measurement conducted
on quantum and classical SELs is described. The difference
in quantum and classical ground states can be used as the
probe determining the ’quantumness’ of the SEL system. The
results indicate a possibility of constructing electrostatic (non-
spin) coupled qubits that could be used as a building block in a
CMOS quantum computer.

Index Terms—Tight-binding model, single-electron lines (SEL),
entanglement, insulator-metallic transition, electrostatic interac-
tion, two-body problem, programmable quantum matter, quan-
tum transport, single-electron transistor.

I. TECHNOLOGICAL MOTIVATION

The CMOS electronic devices continue to scale down with
Moore’s law and now are starting to reach the fundamental
limitation dictated by the fact that the electron charge is
quantized [1], [2], [3]. Moreover, it is commonly accepted by
the technologists that the use of fractional electron charge has
no practical meaning. On the other hand, the use of different
representation of information as by fluxons (quantized flux
of magnetic field) in Rapid Single Quantum Flux electronics
turns out to have its limitations from the point of view of its
size, as implemented in very large scale integration circuits [4].
In this work, we limit ourselves to the electrostatic description
of an electron-electron interaction. Current cryogenic CMOS
technology development opens up perspectives in implementa-
tion of CMOS quantum computer [2], [5] or use of cryogenic
CMOS as interface to superconducting quantum circuits [3],
[1]. Typical values of capacitances that are implementable in
fully depleted silicon-on-insulator (FDSOI) CMOS technology
[5] are in the range of 1–10 aF, as depicted in Fig. 1, corre-
sponding to 16–160 mV of the Coulomb blockade voltage.

Fundamentally, the electron quantum properties are captured
by the Schrödinger equation that can be obtained in the case of
a single electron in effective potential or in the case of many-
electron system confined by some local potential. However,
the Schrödinger equation in a continuous position space is
not the most straightforward approach to capture all electron

transport properties on discrete lattices present in various types
of metamaterials that can be manufactured on large scale. In
this work, we use a tight-binding approximation that can be
derived from the Schrödinger equation [7].

II. MATHEMATICAL STATEMENT OF THE PROBLEM

At first, we consider a physical system of an electron
confined in a potential with two minima (position-dependent
qubit with presence of electron at node 1 and 2) or three
minima (position dependent qubit with presence of electron
at nodes 1, 2 and 3), as depicted in Fig. 1(A), which was
also considered by Fujisawa [8] and Petta [9] and which
forms a position-dependent qubit (or qudit). We can write the
Hamiltonian in the second quantization as

Ĥ =
∑
i,j

ti→j â
†
i âj +

∑
i

Ep(i)â
†
i âi +

∑
i,j

â†i â
†
j âkâlVi,j,k,l,

(1)
where â†i is a fermionic creator operator at i-th point in the
space lattice and âj is fermionic annihilator operator at j-th
point of the lattice. The hopping term ti→j describes hopping
from i-th to j-th lattice point and is a measure of kinetic
energy. The potential Vi,j,k,l represents a particle-particle in-
teraction and term Ep(i) incorporates potential energy. In this
approach we neglect the presence of a spin. It is convenient to
write a system Hamiltonian of position based qubit in spectral
form as

Ĥ(t) = Ep1(t) |1, 0〉 〈1, 0|+ Ep2(t) |0, 1〉 〈0, 1|+
t1→2(t) |0, 1〉 〈1, 0|+ t2→1(t) |1, 0〉 〈0, 1| =

=
1

2
(σ̂0 + σ̂3)Ep1(t) +

1

2
(σ̂0 − σ̂3)Ep2(t) +

1

2
(σ̂1 − iσ̂2)t2→1(t) +

1

2
(iσ̂2 − σ̂1)t1→2(t) (2)

where Pauli matrices are σ̂0, .., σ̂3 while system quantum state
is given as |ψ(t)〉 = α(t) |1, 0〉+β(t) |0, 1〉 with |α|2 + |β|2 =
1 and is expressed in Wannier function eigenbases |1, 0〉 =
wL(x) and |0, 1〉 = wR(x) which underlines the presence of
electron on the left/right side as equivalent to picture from
Schrödinger equation [10].) we obtain two energy eigenstates

∣∣E1(2)

〉
=

(
(Ep2−Ep1)±

√
4t1→2t2→1+|Ep1−Ep2|2

2t1→2

1

)
=

(Ep2 − Ep1)±
√

4t1→2t2→1 + |Ep1 − Ep2|2
2t1→2

|1, 0〉+ |0, 1〉 .
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Fig. 1. Nanometer CMOS structure [3], effective potential and circuit
representation of: (A) electrostatic position-dependent qubit [10] (the quantum
dot dimensions are 80×80 nm2 in 22FDX FDSOI CMOS technology); (B)–
(C) two electrostatic position-dependent qubits representing two inductively
interacting lines (upper ”U” and lower ”L” quantum systems) in minimalistic
way (more rigorously they shall be named as MOS transistor single-electron
lines). Presented systems are subjected to the external voltage biasing that
controls the local potential landscape in which electrons are confined. Classical
limit is expressed by circuit D. 2SEL system is geometrically parameterized
by 3 numbers a, b, c.

and energy eigenvalues

E1(2) =
1

2
(Ep1 + Ep2 ±

√
4t1→2t2→1 + |Ep1 − Ep2|2) =

1

2
(Ep1 + Ep2 ± 2|t1→2|

√
1 + |Ep1 − Ep2

2t1→2t2→1
|2) ≈

1

2
(Ep1 + Ep2 ± 2|t1→2|(1 +

1

2
|Ep1 − Ep2
2t1→2t2→1

|2)) ≈

1

2
(Ep1 + Ep2)± |t1→2|. (3)

The last approximation is obtained in the limit of t1→2 �
Ep1, Ep2 (classical limit when system energy becomes big
and |t| has the interpretation of kinetic energy) which is the

case depicted in the middle Fig.3 when |t| → +∞. Since
Schrödinger formalism can be also applied to the position
based qubit that has discrete eigenenergy spectra, one expects
that Ep and ts takes discrete values. It is even more pro-
nounced when one is using formula being the prescription for
Ep and ts parameters as

Ep(i) =

∫ +∞

−∞
dxψ∗i (x)Ĥ0ψi(x), (4)

where ψ(x)i is wavefunction of electron localized at i-th node
(i-th quantum well) and Ĥ is effective Hamiltonian. In similar
fashion we can define hopping constant from node i-th to
node j-th as energy participating in energy transport from one
quantum well into the neighbouring quantum well so we define

ts,i→j =

∫ +∞

−∞
dxψ∗i (x)Ĥ0ψj(x), (5)

Another interesting fact is the transition from Schrödinger
picture to the tight-binding picture can be done by |ψ〉 =∫∞
−∞ ψ(x)dx |x〉 ≈

∑k=+∞
k=−∞∆xψ(k) |k∆x〉, where ∆x is

the distance between nodes. Having a momentum operator
defined as ~

∆x
√
−1

(− |k + 1〉 〈k|+ |k〉 〈k + 1|) = ~
∆x
√
−1

d
dxk

,

we obtain the second derivative by Euler formula ( d2

dx2 )k =
1

(∆x)2 (|k + 1〉 〈k| + |k〉 〈k + 1| − 2 |k〉 〈k|). Now we can
recover the Schrödinger equation and we observe that
ts,i→i+1 = ~2

2m∆xw, where w is positive and integer. Therefore
ts,i→i+1 has positive discrete values. We also observe that the
potential in the Schrödinger equation can be connected with
Ep(i)− 2ts,i→i+1 = Vp(i) at i-th node. Since kinetic energy
is discrete and potential energy in Schrödigner equation is
continuous one obtains discrete Ep. The eigenstate depends in
the tight binding model on an external vector potential source
acting on the qubit by means of t1→2 = |t1→2|eiα = t∗2→1.
Since every energy eigenstate is spanned by |0, 1〉 and |1, 0〉,
we will obtain oscillations of occupancy between the two wells
[10], [2]. It is worth-mentioning that the act of measurement
will affect the qubit quantum state. Since we are dealing
with a position-based qubit, we can make measurement of
the electron position with the use of an external single-
electron device (SED) in close proximity to the qubit. This
will require the use of projection operators that represent
eigenenergy measurement as

∣∣E0(1)

〉 〈
E0(1)

∣∣ or, for example,
measurement of the electron position at left side so we use
the projector |1, 0〉 〈0, 1|. We can extend the model for the
case of three (and more) coupled wells. In such a case, we
obtain the system Hamiltonian for a position based qubit:

Ĥ =
∑
s

Eps |s〉 〈s|+
∑
l,s,s6=l

ts→l |l〉 〈s| , (6)

where |1〉 = |1, 0, 0〉 , |2〉 = |0, 1, 0〉 , |3〉 = |0, 0, 1〉 and its
Hamiltonian matrix

H(t) =

Ep1(t) t2→1(t) t3→1(t)

t1→2(t) Ep2(t) t3→2(t)

t1→3(t) t2→3(t) Ep3(t)

 (7)



and quantum state |ψ〉 (with a normalization condition
|α|2 + |β|2 + |γ|2 = 1) is given as

|ψ〉 =

α(t)

β(t)

γ(t)

 = α(t) |1, 0, 0〉+ β(t) |0, 1, 0〉+ γ(t) |0, 0, 1〉 .

(8)

Coefficients α(t), β(t) and γ(t) describe oscillations of
occupancy of one electron at wells 1, 2 and 3. The problem of
qubit equations of motion can be formulated by having |ψ〉 =
c1(0)e−

i
~ tE1 |E1〉 + c2(0)e−

i
~ tE2 |E2〉 + c3(0)e−

i
~ tE3 |E3〉,

where |c1(0)|2,|c2(0)|2 and |c3(0)|2 are probabilities of
occupancy of E1, E2 and E3 energetic levels. Energy levels
are the roots of 3rd order polynomial

(−Ep1Ep2Ep3 + Ep3t
2
12 + Ep1t

2
23 + Ep2t

2
13 − 2ts12ts13ts23)

+(Ep1Ep2 + Ep1Ep3 + Ep2Ep3 − t212 − t223 − t213)E

−(Ep1 + Ep2 + Ep3)E2 + E3 = 0,

where |E1〉 , |E2〉 , |E3〉 are 3-dimensional Hamiltonian eigen-
vectors.

By introducing two electrostatically interacting qudits,
we are dealing with the Hamiltonian of the upper and
lower lines as well as with their Coulomb electrostatic
interactions. We are obtaining the Hamiltonian in spectral
representation acting on the product of Hilbert spaces
in the form of Ĥ = ĤU × IL + IU × ĤL + ĤU−L
where Hu and Hl are Hamiltonians of separated upper and
lower qudits, Hl−u is a two-line Coulomb interaction and
Iu(l) = |1, 0, 0〉u(l) 〈1, 0, 0|u(l) + |0, 1, 0〉u(l) 〈0, 1, 0|u(l) +

|0, 0, 1〉u(l) 〈0, 0, 1|u(l). The electrostatic interaction is en-
coded in Ec(1, 1

′) = Ec(2, 2
′) = Ec(3, 3

′) = e2

4πε0εd
= q1

(red capacitors of Fig. 1) and q2 = Ec(2, 1
′) = Ec(2, 3

′) =

Ec(1, 2
′) = Ec(3, 2

′) = e2

4πε0ε
√
d2+(a+b)2

and electrostatic

energy of green capacitors of Fig. 1 is

Ec(1, 3
′) = Ec(3, 1

′) = q2 =
e2

4πε0ε
√
d2 + 4(a+ b)2

, (9)

where a, b and d are geometric parameters of the system, q = e
is electron charge and ε is a relative dielectric constant of the
material; ε0 corresponds to the dielectric constant of vacuum.
The very last Hamiltonian corresponds to the following quan-
tum state |ψ(t)〉 (|γ1(t)|2 + ..|γ9(t)|2 = 1) given as

|ψ(t)〉 = γ1(t) |1, 0, 0〉u |1, 0, 0〉l + γ2(t) |1, 0, 0〉u |0, 1, 0〉l
+γ3(t) |1, 0, 0〉u |0, 0, 1〉l + γ4(t) |0, 1, 0〉u |1, 0, 0〉l
+γ5(t) |0, 1, 0〉u |0, 1, 0〉l + γ6(t) |0, 1, 0〉u |0, 0, 1〉l
+γ7(t) |0, 0, 1〉u |0, 0, 1〉l + γ8(t) |0, 0, 1〉u |0, 1, 0〉l

+γ9(t) |0, 0, 1〉u |0, 0, 1〉l ,
(10)

where |γ1(t)|2 is the probability of finding two electrons at
nodes 1 and 1’ at time t (since γ1 spans |1, 0, 0〉u |1, 0, 0〉l),
etc. The Hamiltonian has nine eigenenergy solutions that
are parametrized by geometric factors and hopping constants
tk,m as well as energies Ep(k) for the case of ‘u’ or ’l’
system. Formally, we can treat Ep(k) = tk→k ≡ tk,k ≡
tk ∈ R as a hopping from k-th lattice point to the same
lattice point k. We obtain the following Hamiltonian

Ĥ =



ξ1,1′ t1′→2′ t1′→3′ t1→2 0 0 t1→3 0 0

t2′→1′ ξ1,2′ t2′→3′ 0 t1→2 0 0 t1→3 0

t3′→1′ t3′→2′ ξ1,3′ 0 0 t1→2 0 0 t1→3

t2→1 0 0 ξ2,1′ t1′→2′ t1′→3′ t2→3 0 0

0 t2→1 0 t2′→1′ ξ2,2′ t2′→3′ 0 t2→3 0

0 0 t2→1 t3′→1′ t3′→2′ ξ2,3′ 0 0 t2→3

t3→1 0 0 t3→2 0 0 ξ3,1′ t1′→2′ t1′→3′

0 t3→1 0 0 t3→2 0 t2′→1′ ξ3,2′ t2′→3′

0 0 t3→1 0 0 t3→2 t3′→1′ t3′→2′ ξ3,3′


=

H(1)1′,3′ H1,2 H1,3

H(1)2,1 H(2)1′,3′ H2,3

H3,1 H3,2 H(3)1,3′

 (11)

with diagonal elements ([ξ1,1′ , ξ1,2′ , ξ1,3′ ] , [ξ2,1′ , ξ2,2′ , ξ2,3′ ],
[ξ3,1′ , ξ3,2′ , ξ3,3′ ]) set to ([(Ep1 + Ep1′ + Ec(1, 1

′)), (Ep1 +
Ep2′ +Ec(1, 2

′)) , (Ep1 +Ep3′ +Ec(1, 3
′))], [((Ep1 +Ep1′ +

Ec(1, 1
′)), (Ep2+Ep2′+Ec(2, 2

′)) , (Ep2+Ep3′+Ec(2, 3
′))],

[((Ep3 + Ep1′ + Ec(3, 1
′), (Ep3 + Ep2′ + Ec(3, 2

′)), (Ep3 +
Ep3′ + Ec(3, 3

′))]). In the absence of magnetic field, we
have tk→m = tm→k = tk,m = tm,k ∈ R and in the
case of nonzero magnetic field tk,m = t∗m,k ∈ C. It is
straightforward to determine the matrix of two lines with
N wells [=3 in this work] each following the mathematical

structure of two interacting lines with three wells in each
line. Matrices H1,2, H2,3, H1,3 are diagonal of size N × N
with all the same terms on the diagonal. At the same time,
matrices H(1)1′,N ′ ,..,H(N)1′,N ′ have only different diagonal
terms corresponding to ((ξ1,N ′ , .., ξ1,N ′), .., ((ξN,N ′ , .., ξN,N ′)
elements. In simplified considerations we can set t1→N =
tN→1 and t1′→N ′ = tN ′→1′ to zero since a probability for
the wavefunction transfer from 1st to N -th lattice point is
generally proportional to ≈ exp(−sN), where s is some
constant. It shall be underlined that in the most general case



of two capacitively coupled symmetric SELs with three wells
each (being parallel to each other), we have six (all different
Ep(k) and Ep(l

′)) plus six (all different tk→s, tk′→s′ ) plus
three geometric parameters (d, a and b) as well as a dielectric
constant hidden in the effective charge of interacting electrons
e. Therefore, the model Hamiltonian has 12+4 real-valued
parameters (four depend on the material and geometry of
2 SELs). They can be extracted from a particular transistor
implementation of two SELs (Fig. 1C). There are two main
physically important regimes when t � Ep and when t �
Ep. They respectively correspond to the case of electron
tunneling from one quantum well into another (the electron
is not in highly excited state) and the case when the elec-
tron’s wavepacket can move freely between neighboring wells
(electron is in highly excited state).

III. ANALYTICAL AND NUMERICAL MODELING OF
CAPACITIVELY COUPLED SELS

A. Analytical Results

The greatest simplification of matrix (7) is when we set all
tk′→m′ = to→m = |t|, and all Ep(k) = Ep(m

′) = Ep for
N=3. Let us first consider the case of two insulating lines
(all wells on each line are completely decoupled so there
is no electron tunneling between the barriers and the barrier
energies are high) where there are trapped electrons so |t| = 0
(electrons are confined in quantum wells and cannot move
towards neighbouring wells). In such a case, we deal with
a diagonal matrix that has three different eigenvalues on its
diagonal and has three different eigenenergy values

Ê =


E1 = q1 = Ep + e2

4πεε0d
,

E2 = q2 = Ep + e2

4πεε0
√
|d|2+(a+b)2

,

E3 = q3 = Ep + e2

4πεε0
√
|d|2+4(a+b)2

,

(12)

so E3 < E2 < E1. In the limit of infinite distance d between
SELs, we have nine degenerate eigenergies. They are set to
Epk which corresponds to six decoupled quantum systems (the
first electron is delocalized into three upper wells, while the
second electron is delocalized into three lowers wells).

Let us also consider the case of ideal metal where electrons
are completely delocalized. In such a case, all tk(k′) � Epl(s)
which brings Hamiltonian diagonal terms to be negligible in
comparison with other terms. In such a case, we can set all
diagonal terms to be zero which is an equivalent to the case
of infinitely spaced SELs lines. It simply means that in the
case of ideal metals, two lines are not ‘seeing’ each other.

Let us now turn to the case where processes associated with
hopping between wells have similar values of energy to the
energies denoted as Epk(l′). In such a case, the Hamiltonian
matrix can be parametrized only by three real value numbers

due to symmetries depicted in Fig. 1B (we divide the matrix
by a constant number |t|) so

q11 =
2Ep+ e2

d

|t| ,

q12 =
2Ep+ e2√

d2+(a+b)2

|t| ,

q13
=

2Ep+ e2√
d2+4(a+b)2

|t| .

For a fixed |t|, we change the distance d and observe that q11

can be arbitrary large, while q12 and q13 have finite values for
d=0. Going into the limit of infinite distance d, we observe that
all q11

, q12
and q13

approach a finite value 2Ep
|t| . We obtain the

simplified Hamiltonian matrix (renormalized Hamiltonian as
Ĥr = 1

|t|Ĥ) that is a Hermitian conjugate and has a property
Hk,k = HN−k+1,N−k+1. It is in the form

Ĥr =



q11
1 0 1 0 0 0 0 0

1 q12
1 0 1 0 0 0 0

0 1 q13
0 0 1 0 0 0

1 0 0 q12 1 0 1 0 0

0 1 0 1 q11 1 0 1 0

0 0 1 0 1 q12
0 0 1

0 0 0 1 0 0 q13
1 0

0 0 0 0 1 0 1 q12
1

0 0 0 0 0 1 0 1 q11


(13)

We can analytically find nine energy eigenvalues and they
correspond to the entangled states. We have

E1 = q11 ,

E2 = q12 ,

E3 = 1
2 (q11 + q12 −

√
8 + (q11 − q12)2),

E4 = 1
2 (q11

+ q12
+
√

8 + (q11
− q12

)2),

E5 = 1
2 (q12

− q13
−
√

8 + (q12
− q13

)2),

E6 = 1
2 (q12

− q13
+
√

8 + (q12
− q13

)2).

(14)

The last 3 energy eigenvalues are the most involving analyti-
cally and are the roots of a 3rd order polynomial

(2q11
+ 6q13

− q11
q12
q13

) + (−8 + q11
q12

+

q11
q13

+ q12
q13

)Ek − (q11
+ q12

+ q13
)E2

k + E3
k = 0.

(15)

We omit writing direct and very lengthy formulas since the
solutions of a 3rd-order polynomial are commonly known. The
eigenvectors have the structure given in Appendix VI.

We can readily recognize that all nine energy eigenvec-
tors are entangled. In particular, the first two eigenenergy
states (given also in formula (48)) are a linear combination
of position-dependent states,

|E1〉 = |1, 0, 0〉U |1, 0, 0〉L − |0, 1, 0〉U |0, 1, 0〉L +

|0, 0, 1〉U |0, 0, 1〉L ,
|E2〉 = |1, 0, 0〉U |0, 1, 0〉L − |0, 1, 0〉U |1, 0, 0〉L
− |0, 1, 0〉U |0, 0, 1〉L + |0, 0, 1〉U |0, 1, 0〉L , (16)



so they have no equivalence in the classical picture of two
charged balls in channels that are repelling each other.

Fig. 2. Cases of: (a) metal (t = 1, Ep = 1); (b) semiconductor (t =
0.1, Ep = 1); and (c) insulator (t = 0.01, Ep = 1) state of 2-SELs given
by eigenenergy spectra as function of distance d between two lines (a = b =
1, e = 1).

Fig. 3. Dependence of eigenenergy spectra vs. (a) quantum well size a+ b,
(b) hopping term |t|, and (c) chemical potential Ep parameter.

B. Numerical Results for Case of Capacitively Coupled SETs

At first, we are analyzing available spectrum of eigenen-
ergies as in the case of insulator-to-metal phase transition
[11], which can be implemented in a tight-binding model by
a systematic increase of the hopping term from small to large

values, while at the same time keeping all other parameters
constant, as depicted in Fig. 3. The described tight-binding
model can mimic a metal (t=1), semiconductor (t=0.1) or
insulator state (t=0.01), as given in Fig. 2. We can recog-
nize 2-SELs’ eigen-energy spectra dependence on the distance
between the two lines. Characteristic narrowing of bands is
observed when one lowers distance d between SELs (which
can be related to the ratio of W/U in the Hubbard model)
and it is one of the signs of transition from metallic to
insulator regime (Mott-insulator phase transition [11]). One of
the plots referring to t = 0.01 describes Anderson localization
of electrons and, in such a case, energy eigenspectra are
determined by formula (12) and the hopping terms t can be
completely neglected since the electrons are localized in the
quantum-well potential minima.

Bottom plots of Fig. 3 describe the ability of tunneling
eigenenergy spectra with respect to the quantum well (a+ b),
Ep and t parameters. The last two parameters can be directly
controlled by an applied voltage as earlier shown in Fig. 1,
where eight voltage signals are used for controlling the ef-
fective tight-binding Hamiltonian. It is informative to notice
that a change in the quantum well length, expressed by a+ b,
would not affect the eigenenergy of 2-SELs significantly. The
observed change affects the ratio of electrostatic to kinetic
energy and thus is similar to the change in energy eigenspectra
generated by different distances d. We can spot narrowing
of the bands when moving from the situation of lower to
higher electrostatic energy of interacting electron and, again,
it is typical for the metal-insulator phase transition. Change of
the ratio of the kinetic to electrostatic energy can be obtained
by keeping constant the quantum well size and the distance
between the two SELs, while changing the hopping constant
t which is a measure of the electron ability in conducting
electric or heat current. Again, we observe the narrowing of
bands when we reduce t so the dominant energy of electron is
due to the electron-electron interaction. The last plot of Fig. 3
describes our ability of tunneling eigenenergy spectra of the
system in a linear way just by changing of the Ep parameter.
In a very real, way we can recognize the ability of tuning the
chemical potential (equivalent to Fermi energy at temperature
T=0K) by controlling the voltages given in Fig.1 in our
artificial lattice system. Due to the controllability of energy
eigenspectra by the controlling voltages, from Fig. 1 one can
recognize 2-SEL system as the first stage of implementation
of programmable quantum matter. In the general case of con-
sidered 2-SELs, the Hamiltonian consists of 12 different Ep
parameters and 6 different t parameters that can be controlled
electrostatically (18 parameters under electrostatic control)
by 2-SELs controlling voltages V0(t), .., V3(t), V0′(t), .., V3′(t)
depicted in Fig. 1.

The numerical modeling of electron transport across the
coupled SELs is about solving a set of nine coupled recurrent
equations of motion as it is in the case of the time-dependent 2-
SEL Hamiltonian. In this work, we consider time-independent
Hamiltonian, implying constant occupation of energetic levels.
Therefore, the quantum state can be written in the form |ψ(t′)〉



= α1e
~
i E1t

′ |E1〉+. . . +α9e
~
i E9t

′ |E9〉, so the probability of
occupancy of energetic level E1 is |α1|2 = | 〈E1| |ψ(t)〉 |2 =
pE1 = constant, etc. Since we have obtained the analyti-
cal form of all states |Ek〉 and eigenenergies Ek, we have
the analytical form of quantum state dynamics |ψ(t′)〉 with
time. From the obtained analytical solutions presented in Ap-
pendix VI, we recognize that every eigenenergy state is a linear
combination of position-based states |k〉

⊗
|l′〉, which implies

that the quantum state can never be fully localized at two
nodes k and l′ as it is pointed out by the analytically obtained
eigenstates of the 2-SEL Hamiltonian given in Appendix VI.

In the conducted numerical simulations we visualize ana-
lytical solutions. We set ~ = 1 and α1 = . . . = α8 = 1

9 , α9 =√
1− 8

81 (Scenario I that has populated all nine energetic lev-

els) or α1 = α2 = 1
2 ,α9 =

√
2

2 ,α3 = . . . = α8 (Scenario II that
has populated three energetic levels) that will correspond to the
top or bottom plots of Fig. 4. We can recognize that probability
of occupancy of (1,1’) from Fig. 1 (when two electrons are at
input of 2-SEL) is given by |(〈1, 0, 0|

⊗
〈1, 0, 0|) |ψ(t)〉 |2 =

|γ1(t)|2 = p1(t) (two electrons as the SEL inputs) can be com-
pared with occupancy of (3,3’) given by p9(t) = |γ9(t)|2 =
|(〈0, 0, 1|

⊗
〈0, 0, 1|) |ψ(t)〉 |2 (two electrons at the SEL out-

puts) as depicted in Fig. 4. It is relatively easy to identify
probability of finding the first electron at input as the sum
of p1(t) + p2(t) + p3(t).

Various symmetries can be traced in Scenario II (nine pop-
ulated energy levels) given by Fig. 4 as between probability
p2(t) and p8(t) or in the upper part of Fig. 4 in Scenario
I (three populated energy levels) when p2(t) = p8(t) or
φ2(t) = phase(γ2(t)) = φ8(t). The same symmetry relations
apply to the case of probability p4(t) and p6(t) as well as
φ4(γ4(t)) and φ6(γ6(t)). These symmetries have their origin
in the fact that the 2-SEL system is symmetric along the x-
axis which can be recognized in the symmetries of simplified
Hamiltonian matrix (13). It shall be underlined that in the most
general case, when the system matrix has no symmetries, the
energy eigenspectra might have less monotonic behavior.

C. Act of Measurement and Dynamics of Quantum State

The quantum system dynamics over time is expressed by
the equation of motion Ĥ(t′) |ψ(t′)〉 = i~ d

dt′ |ψ(t′)〉 that can
be represented in a discrete-time step by the relation

dt′

i~
Ĥ(t′) |ψ(t′)〉+ |ψ(t′)〉 = |ψ(t′ + dt′)〉 . (17)

It leads to the following equations of motion for the quantum
state expressed by equation (10) as follows

~γ(t′ + dt′) =



γ1(t′) + dt′
∑9
k=1 Ĥ1,k(t′)γk(t′) =

f1(~γ(t′), dt′)[Ĥ(t′)],

..

γ9(t′) + dt′
∑9
k=1 Ĥ9,k(t′)γk(t′) =

f9(~γ(t′), dt′)[Ĥ(t′)]


=

= ~f(~γ(t′), dt′)[Ĥ(t′)] = ~f(~γ(t′), dt′)[Ĥ(t′)].

(18)

Fig. 4. Quantum state of two SELs over time: Upper (Lower) plots populate
3 (9) energy levels as given by Scenario I (Scenario II). The probabilities
of finding both electrons simultaneously at the input p1(t) = |γ1(t)|2
and output p9(t) = |γ1(t)|2 is shown with time as well as evolution of
phases φ1(t), .., φ9(t) of γ1(t) = |γ1(t)|eφ1(t), .., γ9(t) = |γ9(t)|eφ9(t)

corresponding to equation (10).



Symbol [.] denotes a functional dependence of ~f(~γ(t′), dt′) on
Hamiltonian Ĥ(t′). The measurement can be represented by
projection operators Π̂(t′) equivalent to the matrix that acts
on the quantum state over time. The lack of measurement can
simply mean that the state projects on itself so the projection is
the identity operation (Π̂(t′) = Î9×9). Otherwise, the quantum
state is projected on its subset and hence the projection oper-
ator can change in a non-continuous way over time. We can
formally write the quantum state dynamics with respect to time
during the occurrence of measurement process (interaction of
external physical system with the considered quantum system)
as

~γ(t′ + dt′) =

Π̂(t′ + dt′)(~f(~γ(t′), dt′))

(Π̂(t′ + dt′)~f(~γ(t′), dt′))†(Π̂(t′ + dt′)~f(~γ(t′), dt′))
. (19)

Let us refer to some example by assuming that a particle in
the upper SELs was detected by the upper output detector
(Fig. 1b). In such a case, the following projector Π̂(t, t+ ∆t)
is different from the identity in time interval (t, t+ ∆t) with
11t,t+∆t = 1 set to 1 in this time interval and 0 otherwise. The
projector acts on the quantum state (diagonal matrix is given
by ’diag’ symbol). It is given as

Π̂(t, t+ ∆t) = (1− 1t,t+∆t)(ÎU × ÎL) +

1t,t+∆t(|0, 0, 1〉U 〈0, 0, 1|U × ÎL) =

(1− 1t,t+∆t)(ÎU × ÎL) +

1t,t+∆t(|0, 0, 1〉U 〈0, 0, 1|U × (|1, 0, 0〉L 〈1, 0, 0|L +

|0, 1, 0〉L 〈0, 1, 0|L + |0, 0, 1〉L 〈0, 0, 1|L)) =

= (1− 1t,t+∆t)Î9×9 + 1t,t+∆tdiag(0, 0, 1)× Î3×3 (20)
= diag((1− 1t,t+∆t), (1− 1t,t+∆t), (1− 1t,t+∆t),

(1− 1t,t+∆t), (1− 1t,t+∆t), (1− 1t,t+∆t), 1, 1, 1)

D. Correlation Function for Classical and Quantum Ap-
proaches for Single-Electron Lines

In this work, two capacitively coupled single-electron lines
(SEL) are treated by the tight-binding model with the use of
three nodes for each line to describe the electron occupancy. It
shall be underlined that the most simplistic approach towards
the two SELs can be attempted with the use of two nodes for
each line. In such a case, it is possible to introduce a corre-
lation function for both quantum and classical treatments of
the system under consideration. Let us start from the quantum
approach. The Hamiltonian of the system having flat bottoms
of potentials can be written as

H =


Ec1 + 2Ep eiβts2 eiαts1 0

e−iβts2 Ec2 + 2Ep 0 eiαts1

e−iαts1 0 Ec2 + 2Ep eiβts2

0 e−iαts1 e−iβts2 Ec1 + 2Ep

 ,

(21)
where Ec1 = q2

d and Ec2 = q2

√
d2+a2

, so Ec1 − Ec2 =
q2

d −
q2

√
d2+a2

> 0. The hopping terms are parametrized by
ts1 and ts2. This last Hamiltonian refers to the quantum state

describing the occupancy of four nodes at upper U=(1,2) or
lower line L=(1’,2’) by two spatially separated electrons

|ψ〉 = γ1(t) |1〉 |1′〉+ γ2(t) |1〉 |2′〉+ γ3(t) |2〉 |1′〉+

γ4(t) |2〉 |2′〉 . (22)

Normalization condition requires |γ1|2 + · · ·+ |γ4|2 = 1. We
have four eigenenergies

E1 =
1

2
(Ec1+Ec2+4Ep−

√
(Ec1−Ec2)2 +4(ts1−ts2)2)),

E2 =
1

2
(Ec1+Ec2+4Ep+

√
(Ec1−Ec2)2 +4(ts1−ts2)2)),

E3 =
1

2
(Ec1+Ec2+4Ep−

√
(Ec1−Ec2)2 +4(ts1+ts2)2)),

E4 =
1

2
(Ec1+Ec2+4Ep+

√
(Ec1−Ec2)2 +4(ts1+ts2)2)),

(23)

fulfilling E1 < E2, E3 < E4 as corresponding to four
eigenenergy states

|E1〉 =


−ei(α+β),

− 2eiα(ts1−ts2)√
(Ec1−Ec2)2+4(ts1−ts2)2−Ec1+Ec2

,

2eiβ(ts1−ts2)√
(Ec1−Ec2)2+4(ts1−ts2)2−Ec1+Ec2

,

1

 ,

|E2〉 =


−ei(α+β),

2eiα(ts1−ts2)√
(Ec1−Ec2)2+4(ts1−ts2)2+Ec1−Ec2

,

− 2eiβ(ts1−ts2)√
(Ec1−Ec2)2+4(ts1−ts2)2+Ec1−Ec2

,

1

 ,

|E3〉 =


ei(α+β),

− 2eiα(ts1+ts2)√
(Ec1−Ec2)2+4(ts1+ts2)2−Ec2+Ec1

,

− 2eiβ(ts1+ts2)√
(Ec1−Ec2)2+4(ts1+ts2)2−Ec2+Ec1

,

1

 ,

|E4〉 =


ei(α+β),

2eiα(ts1+ts2)√
(Ec1−Ec2)2+4(ts1+ts2)2+Ec1−Ec2

,

2eiβ(tts1+ts2)√
(Ec1−Ec2)2+4ts1+ts2)2+Ec1−Ec2

,

1

 . (24)

with ground state

E3 = Eg =
1

2
(Ec1+Ec2+4Ep−

√
(Ec1−Ec2)2 +4(ts1+ts2)2)).

(25)
We observe that in the ground state, the probability of occur-
rence of two particles at the maximum distance p1,2′ = p2,1′ =



panticorr to their probability of occurrence at the minimum
distance p1,1′ = p2,2′ = pcorr is given by the formula:

pacorr
pcorr

=

=

[√
(Ec1 − Ec2)2 + 4(ts1 + ts2)2 − (Ec1 − Ec2)

2(ts1 + ts2)

]2

=

[√
q2(
√
d2 + (a+ b)2 − d)2 + 4(ts1 + ts2)2

2(ts1 + ts2)d
√
d2 + (a+ b)2

−
q2(
√
d2 + (a+ b)2 − d)

2(ts1 + ts2)d
√
d2 + (a+ b)2

]2

(26)

It is worth mentioning that the ground state of two coupled
SELs brings electrons partly into the anticorrelated position
(the two electrons at the maximum distance) and the correlated
positions (the two electrons at the minimum distance), which
simply means that the anticorrelation is not greatly pronounced
in the quantum case at it is the case of the classical picture.
One can refer to the following dependence of the ratio between

probabilities for the state to be anticorrelated or correlated, as
depicted by Fig. 5.

The quantum state in case of time-independent Hamiltonian
can be expressed as

|ψ〉=√pE1e
φE10ie

1
~iE1t |E1〉+

√
pE2e

φE20ie
1
~iE2t |E2〉+

√
pE3e

φE30ie
1
~iE3t |E3〉+

√
pE4e

φE40ie
1
~iE4t |E4〉

. (27)

Having Ec1 = q2

d and Ec2 = q2

√
d2+a2

so Ec1−Ec2 = q2

d −
q2

√
d2+a2

> 0 and hopping terms ts1, ts2 we obtain Hamiltonian
and a correlation function C.

We refer to the physical situation depicted in Fig. 6 and
utilize the correlation function C to capture as to what extent
the two electrons are in a correlated state being both either
on the left or on the right side that is corresponding to terms
N−,−, N+,+, or in an anticorrelated state (expressed by terms
N+,− and N−,+). Such function is commonly used in spin
systems and is a measure of non-classical correlations. Using
a tight-binding model describing two electrostatically coupled
SELs and using the same correlation function applicable in
the test of Bell theory of entangled spins [15], we obtain the
correlation function C given by formula:

C =
N+,+ +N−,− −N−,+ −N+,−

N+,+ +N−,− +N−,+ +N+,−
=

4[

√
pE1
√
pE2(ts1 − ts2) cos[−t

√
(Ec1 − Ec2)2 + 4(ts1 − ts2)2 + φE10 − φE20]√

(Ec1 − Ec2)2 + 4(ts1 − ts2)2

+

√
pE3
√
pE4(ts1 + ts2) cos[−t

√
(Ec1 − Ec2)2 + 4(ts1 + ts2)2 + φE30 − φE40]√

(Ec1 − Ec2)2 + 4(ts1 + ts2)2
]

−(Ec1 − Ec2)[
pE1 − pE2√

(Ec1 − Ec2)2 + 4(ts1 − ts2)2
+

pE3 − pE4√
(Ec1 − Ec2)2 + 4(ts1 + ts2)2

] (28)

Classical intuition points out that when the kinetic energy
of electrons goes to zero they shall be anticorrelated due to the
presence of the repulsive Coulomb force. On the other hand,
when the kinetic energy is dominant, the Coulomb interaction
does not matter so much and the correlation function shall be
zero or positive. Four fundamental solutions for the correlation
function corresponding to the occupancy of four eigenenergies
are given by Fig. 7. Indeed, when only the ground state is
occupied so p1 = 1, then C < 1, as depicted in Fig. 8. It is
remarkable to observe that C = 0 if p1 = p3 = 0.5. We also
observe that if the two qubits are electrostatically decoupled
then C = 0 does not need to apply. However, for certain cases,
the weaker the Coulomb interaction the sharper the peaks in
the 2-SEL correlation function C, as depicted by Fig.8.

Now we turn towards the classical description of the two
coupled single-electron lines using Newtonian dynamics as
we expect qualitative changes in the correlation function due

to the unique differences between the quantum and classical
pictures. The confinement potential is approximated as a step
function and presence of Poyting vector is neglected in the
space as Hamiltonian system is time-independent, and system
Hamiltonian corresponds to the classical mechanical energy
that is preserved if we omit radiation emission for two particles
subjected to acceleration and deceleration during different
moments of motion that can be periodic or aperiodic. We have
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Fig. 5. The ratio of probabilities in 2 SELs ground state between correlated
and anticorrelated quantum state components is very strongly depending on
hopping constants by term ts1 + ts2 and very strongly depends on size of
quantum wells denoted by a and distance between two two neighbours b.

the minimalistic classical Hamiltonian for 2SELs given as

Ĥ =
1

2m1
p1(t)2 +

1

2m2
p2(t)2 +

q2√
d2 + (x1(t)− x2(t))2

+V0Θ(x1(t)− xmax1) + V0Θ(−x1(t)− xmax1) +

V0Θ(x2(t)− xmax2) + V0Θ(−x2(t)− xmax2)

+Vb1Θ(x1(t)− xb1) + Vb1Θ(−x1(t)− xb1) +

Vb2Θ(x2(t)− xb2) + Vb2Θ(−x2(t)− xb2).

(29)

We simplify the situation by having two symmetric masses
m1 = m2 = m and same charges q, and having xmax1 =
xmax2 = xmax. We set xb1 = xb2 → 0. There are always two
possible grounds states of the classically interacting electrons
in 2 SELs configuration corresponding to the same energy
when charged particles of same charge are confined in local
potential that corresponds to two positions of particle that are
at maximum distance x2(t) = ∓xmin = constans, dx1

dt (t) =

0, d
2x1

dt2 (t) = 0, x2(t) = ±xmin, dx1

dt (t) = 0, d
2x1

dt2 (t) = 0.
Classical ground state is maximally anticorrelated. On the
contrary the same situation in quantum picture has only one
ground state and this state is not maximally anticorrelated and
is partly correlated what is expressed by formula 26. More-

Fig. 6. Case of electrostatically coupled charged particles confined
by local potentials and electrostatically interacting. Concept of correla-
tion/anticorrelation in their positions.
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Fig. 7. Four main fundamental configurations named as anticorrelation and
correlation for system of coupled SEL depicted in Fig. 6. The correlation
function C that are grasped by formula (28) corresponding to the full
occupancy of one among four eigenenergies.
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Fig. 8. Correlation function C with time for time-independent Hamiltonian
corresponding to full and partial occupancy of 4 eigenenergies of 2-SEL
system.

over, in the classical picture of 2 SELs, one can observe the
emergence of deterministic chaos that is heavily pronounced
in the classical system, as depicted in Figs. 10–11. Now we
are moving towards a description of classical 2-SEL system in
case of perfect correlated or anticorrelated electrons. From the
classical Hamiltonian we determine the equations of motion of
the two electrons assuming the existence of the antisymmetric
case ±x(t) = x1(t) = −x2(t) at all instances of motion for
the system symmetric around x = 0. We assume that the
distance between electrons

√
d2 + x(t)2 ≈ d. We have

mv2(t) +
q2

√
d2 + x2

= Ec > 0,
d2x

dt
=

xq2

(
√
d2 + x2)3

.

In simplified case d� x and thus we can write

m
d2x(t)

dt2
= x

q2

d
3
2

. (30)
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Fig. 9. Varying dependence of classical correlation function [C =
x1(t)x2(t)

x2
max

] over time. Upper case refers to 2-SELs with particles of sig-
nificantly different speeds at anticorrelated positions at initial time; middle
figure describes two perfectly anticorrelated particles (VII); third case refers
to the proceeding figure 10.
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Fig. 10. Evolution of positions xi(t) and velocities vi(t) for the system of
2 electrostatically coupled SELs in classical picture.
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Fig. 11. Acceleration for the system of 2 coupled oscillators from Fig.10
confined by local potential with coordinates x1, x2 ∈ (−xmax, xmax) with
xmax = 10 .

and it has solutions for each electron position

x(t) =

√
mv0d

3/4

q
sinh(

q√
md3/4

t). (31)

We notice that xmax =
√
mv0d

3/4

q sinh( q√
md3/4

T
4 ) and the

period of oscillations is

T = 4

√
md3/4

q
Arcsinh(

qxmax√
mv0d3/4

) (32)

if x1(t = 0) = x2(t = 0) = 0 and when dx1

dt (t = 0) =
−x2

dt (t = 0) = v0 6= 0, which is a definition of perfect
anticorrelation. Collision with walls is occurring at T

4 time
while the total size of classical well is 2xmax. We observe that
x1(t) =

√
mv0d

3/4

q sinh( q√
md3/4 t) = −x2(t) for t ∈ [0, T4 ].

Correlation function C is given analytically

C(t) = − 1

x2
max

mv2
0d

3/2

q2
(sinh(

q√
md3/4

t))2 < 0 (33)

and is negative for any energy Ec (function of q, d, v0) of
the system. Such situation occurs only in some subsets of the
classical case since in the quantum case the sign of function
C depends on the occupancy of the energetic levels. In the
classical treatment of 2-SELs there exist the case of perfectly
correlated electrons at any distance that is independent on the
system energy if we are above the ground state.

It is possible to specify such situation when at t = 0 we
have x1(t = 0) = x2(t = 0) = 0 and when dx1

dt (t = 0) =
x2

dt (t = 0) = v0. In such a case, the Coulomb force will
act perpendicular to the direction of motion and will play no
role in the electron movement. Electron movement will be
correlated and with constant speed over time, with periodic
reflections from the potential walls. The correlation function
will have the form

C(t) =
1

x2
max

(v0)2t2 (34)

within time t ∈ [0, T/4]. A perfect correlation of electrons
in the classical situation can occur for any energy (if kinetic
energy is larger than zero) of the system Ec > 0. It is one
of the key differences from the quantum situation when the



positive value of correlation function can occur only for certain
system eigenenergies as given by formula (28).

It shall be underlined that the perfectly correlated electrons
generate higher overall magnetic field energy as it is the case
of two electric currents of the same sign (correlated electron
movement in one direction) generated by each electron. In
the case of anticorrelated electrons we are dealing with elec-
tric currents of opposite sign that are generating magnetic
field in the opposite directions, thus decreasing the overall
magnetic field. Therefore, thermal equilibrium of 2-SEL will
favor anticorrelation of two electrons. It shall be underlined
that, in accordance with the classical thermodynamics that
applies to the case of two electrons treated classically, the
movement of electron with certain acceleration will cause
the occurrence of non-zero Poynting vector into the space
and thus electron’s energy will be emitted in the form of
electromagnetic radiation. In such way one can introduce
effective dissipative term to the movement of electrons and
it will cause the system mechanical energy to eventually
vanish. After sufficiently long time the electrons will stop
their oscillatory movement and they will move into ground
state that is perfectly anticorrelated and corresponds to the
case when x2 = x1 = ±xmax and d

dtx1 = d
dtx2 and when

d2

dt2x1 = 0 = d2

dt2x2 = 0. It is also worth mentioning that the
ground state of two classical electrons in 2-SELs is different
from the quantum ground state of 2-SELs.

There exists the case of two perfectly anticorrelated elec-
trons at any distance in the classical treatment that is indepen-
dent of the system energy. Such situation does not take place
in the quantum case as treated by the tight-binding model
given by formula (28) that has discrete spectra of energies as
specified by (23).

We can write the equations of motion of two electrons
assuming the existence of antisymmetric case x1(t) = −x2(t)
at all instances of motion for the system symmetric around
x = 0. From the equation

mv2(t) +
q2√

d2 + 4x(t)2
= Ec = const > 0,

we obtain the equation
√

q4

(Ec−mv2(t))2 − d2 = 2x(t) and
consequently we obtain the equation of motion

m
dv

dt
=

1

2

√
q4

(Ec −mv2(t))2
− d2 · q2(Ec−mv2(t))3 1

q6
=

1

2q4

√
q4(Ec −mv2(t))4 − d2(Ec −mv2(t))6. (35)

Finally we obtain the equation

dv√
q4(Ec−mv2(t))4 − d2(Ec−mv2(t))6

= dt
1

2mq4
(36)

We introduce a new variable u = d
q (Ec − mv2). We have

du = −2mdq vdv. We also notice that
√

(Ecm −
q
mdu) = v.

The last expressions imply

dv = − q

2md

du

v
=

− q

2md

du√
(Ecm −

q
mdu)

= −
√
q

2
√
md

du√
(Ecdq − u)

. (37)

The last expression allows us to write integral∫
dv√

q4(Ec −mv2))4 − d2(Ec −mv2)6
=

d2

q4

∫
du√

(Ecdq − u)

1

u2
√

1− u2
=

= s1

∫
du√

(s− u)

1

u2
√

1− u2
. (38)

Setting s1 = d2

q4 and s = Ecd
q we obtain the integral

s1

∫
du√
(s−u)

1
u2
√

1−u2
that has a solution as three types of

elliptic functions given in Appendix VII.

E. Classical Weak Measurement on 2-SEL System

Measurement on a given physical system is about intro-
ducing an interaction of it with an external physical system
that acts as a probe. If this interaction is strong (weak) we are
dealing with a strong (weak) measurement. We shall introduce
an external charged particle at a certain distance that can move
only in parallel to the system being probed and then we apply
Newtonian equations of motion. For the sake of simplicity, we
consider only interaction of the probe that is moving electron
across one line with nearest charged particle, as depicted in
Fig. 14. At a first level of approximation, the movement of
external electron is the perturbation to the physical system of
two electrons (2-SELs).

F. Weak Quantum Measurement on 2-SEL System

We consider an interaction of two single-electron lines (2-
SEL) that incorporate qubits A and B with an external line
along which there is a movement of position-based qubit
C. The CMOS structures have the capability to impose a
constrained ‘movement’ of a virtual qubit along single-electron
lines. This way, the moving qubit becomes effectively a flying
qubit, which is a term usually reserved for polarized photons
participating in quantum information processing. At a very far
distance, there is no interaction between the flying qubit and
2-SELs. In such a case one can have a tensor of two density
matrices being a density matrix of 2-SELs denoted by ρAB
and the external flying qubit. We have a three-body quantum
density matrix given as

ρ̂ABC = ρ̂C × ρ̂AB =

(
ρC [1, 1]ρ̂AB ρC [1, 2]ρAB

ρC [2, 1]ρ̂AB ρC [2, 2]ρAB

)

=

(
Â1 B̂1

Ĉ1 D̂1

)
. (39)



We immediately recognize that we can obtain the density
matrix of particle C by tracing out the existence of density
matrix AB

ρ̂C =
∑

iA={1,2},jB={1′,2′}

〈iA, jB | ρ̂ABC |iA, jB〉 . (40)

In similar way we obtain the density matrix for 2-SEL system

ρ̂AB =
∑

kC={1,2}

〈kC | ρ̂ABC |kC〉 . (41)

The last expressions can be expressed by formula

ρ̂C =

(
Tr(Â1) Tr(B̂1)

Tr(Ĉ1) Tr(D̂1)

)
, ρ̂AB = Â1 + D̂1. (42)

System of 2-SELs with the flying qubit can be reagarded as
non-dissipative system and thus one can write the following
equations of motion

ρ(t) = e
1
−i~H0te

1
i~

∫ t
0
Ĥ(t′)dt′ρ(t)e

1
−i~

∫ t
0
Ĥ(t′)dt′e

1
−i~H0t,

(43)
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Fig. 12. Case of the classical measurement with electron used for probing of
2-SELs.

20 40 60 80 100 120 140
Time

-0.8

-0.6

-0.4

-0.2

0.2

2SELs correlation function with WM

Fig. 13. Correlation function for 2-SELs under classical weak measurement
from external probing charged particle. One shall refer to the bottom plot of
Fig. 9 and to Fig.14.

where H0 is a time-independent Hamiltonian of isolated 2-
SELs and isolated external qubit, while H(t′) stands for elec-
trostatic interaction between the flying qubit and 2-SELs. We
have the total system Hamiltonian having time-independent
and time-dependent components

Ĥ(t) = Ĥ0 + Ĥ1(t) =

= (ÎC × ĤAB + ĤC × ÎAB)0 + ĤAC(t)× ÎB , (44)

where ÎAB and ÎC are identity matrices acting on the 2-SELs
and flying qubit, while ĤAB is 2-SEL Hamiltonian. ĤC is
the flying qubit Hamiltonian and ĤAC(t) is the interaction
Hamiltonian between A line and flying qubit C (note: for the
sake of simplicity we neglect the interaction between B line
and C qubit). The detailed structure of those Hamiltonians are
given in Appendix C.

Defining 2-SEL correlation function previously defined by
formula (28), so C = CAB , incorporated into three-body sys-
tem takes form as CAB,C = ÎC × ĈAB and, consequently, we
obtain the following time dependence of correlation function
given as

C(t) = Tr(CAB,Cρ(t)). (45)

Details of the calculations can be found in Appendix C.
Finally, we obtain the formula for correlation function of the
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Fig. 14. Concept of classical and quantum weak measurements in a double
single-electron line system. All simulations were conducted for the classical
case.



2-SEL system interacting weakly with the flying qubit in the form as

C(t) =

(Ec1 − Ec2)2 − 4 cos

(
t
√

(Ec1−Ec2)2+16

~

)(
cos
(∫ t

0
dt′Ec11′′ (t

′)−Ec1′′2(t′)
~

)
+ cos

(∫ t
0
dt′

Ec2′′1(t′)−Ec2pp2(t′)
~

)
− 2
)

(Ec1 − Ec2)2 + 16

+
4 cos

(∫ t
0
dt′Ec11′′ (t

′)−Ec1′′2(t′)
~

)
+ 4 cos

(∫ t
0
dt′Ec2′′1(t′)−Ec2′′2(t′)

~

)
+ 8

(Ec1 − Ec2)2 + 16
(46)

where Ec11′′(t) = q2√
(x(t)+a+b)2+d2

1

,

Ec12′′(t) = q2√
(x(t)+2(a+b))2+d2

1

,

Ec21′′(t) = q2√
(x(t)−(a+b))2+d2

1

,

Ec22′′(t) = q2√
(x(t))2+d2

1

.

The movement of the flying qubit can be described, for exam-
ple, by a constat velocity v = v0, so x(t) = x0 + v0t. In case
of a time-dependent flying qubit, x(t) = x(t0) +

∫ t
t0
vf (t′)dt′,

where vf (t) is an instantaneous speed of the flying qubit. The
only assumption for this model is that particle at time t = 0
is at a far distance from 2-SELs.

G. Analogies of Coupled SELs with Other Physical Systems

The repulsion (anticorrelation in position) of two electrons
occurs in two parallel SELs and can be used in the construction
of quantum SWAP gate. Therefore, the results obtained ana-
lytically and numerically on the two interacting SELs has its
meaning in the development of quantum technologies [10] and
also point to the interlink between the fundamental and applied
science. It is important to underline that the tight-binding
model allows for a quick detection of entangled states and
for a transfer of this information into Schrödinger formalism,
which has its importance in the design of quantum computer
consisting of many coupled entangled qubits (fundamental
modelling due to the large Hilbert space is limited to 10
qubits). Quite obviously, the Schrödinger equation gives de-
tailed space resolution of quantum mechanical phenomena tak-
ing place in 2 or N electrostatically coupled SELs that might
contain an arbitrary number of quantum wells. Incorporation
of spin effects is also possible in the given framework, but
is beyond the scope of this work. The tight-binding model
can be derived from the Schrödinger formalism (and vice
versa) and is the simplistic version of the Hubbard model
that is a very universal model capable of descring various
collective phenomena in condensed matter physics. Therefore,
it is expected that the tight-binding model can be also effec-
tive in describing physical effects in various programmable
(electrostatically controlled) CMOS nanostructures. It shall be
also underlined that the described position-dependent qubits
are analogical to superconducting Cooper pair boxes where
quantum phase transitions have been observed [6], [12]. The
hopping term in the tight-binding model of semiconductor

position-dependent qubits is analogical to energy of Josephson
coupling in superconducting Cooper pair box (or in other types
of superconducting qubits). Therefore, the existence of quan-
tum phase transitions [13] is expected to occur in the studied
SELs system since quantum phase transitions occurs in arrays
of electrostatically coupled Josephson junctions. Therefore one
is expecting to spot quantum phase transition in SELs coupled
to superconducting Cooper pair boxes.

IV. CONCLUSION

Described two single-electron lines (SEL) are approximated
by occupancy of two electrons at three different nodes spread
out on each line: 1(1’), 2(2’) and 3(3’), as depicted in Fig. 1.
In such a way, two electrostatic semiconductor position-based
qubits can be characterized by what makes the result of this
work valid for the case of two capacitively interacting semi-
conductor qudits or qubits [2]. In the presented work, new
qualitative features of two capacitively coupled single-electron
lines were described as occupancy oscillations at SEL nodes
depicted in Fig. 4. Obtained occupancy oscillations have differ-
ent form in the classically coupled electrical lines. Particular
difference between quantum and classical description of two
SELs is reflected in the anticorrelation principle applicable
to the electrons’ positions. Electrons tend to have maximum
distanced due to the electrostatic repulsion. This anticorre-
lation principle is less pronounced in the quantum ground
state than in the classical ground state of two coupled SELs
(2-SEL). In the classical picture in 2-SEL system, electrons
take such positions that their distance is maximimzed and
kinetic energy is zero. However in the quantum case of 2-
SELs, kinetic energy of electrons is never zero, which stands
for fundamental difference between the classical and quantum
pictures. Moreover, the entanglement is present in the quantum
ground state of 2-SELs, which is not present in the classical 2-
SELs. In the conducted work, the correlation function was in-
troduced and this function weight the degree of correlation and
anticorrelation in 2-SEL system. Quite clearly, the presence
of anticorrelation and correlation in the 2-SEL ground state is
the indication of quantumness of the studied structure. What is
more, there are two configurations for electrons corresponding
to the classical ground state of 2-SELs while there is only one
quantum ground state of 2-SELs. It is also quite interesting
to observe the physical change of the 2-SEL system during



the classical and quantum weak measurement with the use of
external electron as a probe. In the classical case, the moving
electron constrained to 1D, as it is the case of nanowire, is
changing its momentum and perturbing the 2-SEL state. On
another hand, in the quantum treatment of 2-SEL system, it
is recommendable to use a flying position based qubit as the
probe moving in 1D chain of coupled quantum dots. In such
a case, one is changing the physical state of the flying qubit
while perturbing the state of the 2-SELs system. Anticorrela-
tion function is monitored during this process and analytical
formula was specified. From the obtained solutions, we can
spot the possible transitions between energy levels (depicted
in Fig. 3 as a function of distance between SELs) when the
system is subjected to the external microwave field as coming
from RF sources placed in the proximity of SELs that can be
a factor controlling physical state of coupled SELs. Moreover,
the entangled eigenstates were obtained as analytical solutions
of simplified system matrix Hamiltonian Ĥ , equation (13), and
are given by formulas (48)–(50) in Appendix VI. The entan-
gled states correspond to eigenenergies obtained analytically
and given by formulas (14) and depend on SEL distance as
expressed by Fig. 3. The conducted study has its relevance in
single-electron transistor structures as deriving from nanoscale
CMOS. Such systems are expected to mimic various types
of programmable quantum matter that can simulate many
types of physical phenomena as Ep and t parameters of tight-
binding model can be controlled electrostatically in single-
electron transistors. One of the interesting illustrations of this
is the imitation of metal-insulator phase transition in coupled
nanowires, as given in Fig. 3 which can be obtained with
electrical tuning of the 2-SELs system.
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VI. APPENDIX A

The simplified Hamiltonian, given by equation (13) for two
electrostatically interacting single-electron lines (Fig. 1) has
eigevalues pointed by formulas (10)–(12) and has following

eigenvectors

Ĥr =



q11
1 0 1 0 0 0 0 0

1 q12
1 0 1 0 0 0 0

0 1 q13 0 0 1 0 0 0

1 0 0 q12 1 0 1 0 0

0 1 0 1 q11
1 0 1 0

0 0 1 0 1 q12
0 0 1

0 0 0 1 0 0 q13
1 0

0 0 0 0 1 0 1 q12
1

0 0 0 0 0 1 0 1 q11


, (47)

|E1〉 =



1,

0,

0,

0,

−1,

0,

0,

0,

1


, |E2〉 =



0,

1,

0,

−1,

0,

−1,

0,

1,

0


,

∣∣E3(4)

〉
=



−1,
1
4 (q11 − q12 ±

√
8 + (q11 − q12)2),

0,
1
4 (q11

− q12
±
√

8 + (q11
− q12

)2),

0,

− 1
4 (q11

− q12
±
√

8 + (q11
− q12

)2),

0,

− 1
4 (q11 − q12 ±

√
8 + (q11 − q12)2),

1


, (48)

∣∣E5(6)

〉
=



−1,
1
4 (q12

− q13
±
√

8 + (q12
− q13

)2),

0,
1
4 (q12 − q13 ±

√
8 + (q12 − q13)2),

0,

− 1
4 (q12

− q13
±
√

8 + (q12
− q13

)2),

0,

− 1
4 (q12

− q13
±
√

8 + (q12
− q13

)2),

1


,

(49)



∣∣Ek=(7..9)

〉
=

1,

(Ek=(7..9) − q11)/2,
(−Ek=(7..9)+q11

)(−2+E2
k=(7..9)+q11

q12
−Ek=(7..9)(q11

+q12
))

2(−3Ek=(7..9)+q11
+2q13

) ,

(Ek=(7..9) − q11)/2,

2,

(Ek=(7..9) − q11)/2,

2,
(−Ek=(7..9)+q11)(−2+E2

k=(7..9)+q11q12−Ek=(7..9)(q11+q12 ))

2(−3Ek=(7..9)+q11
+2q13

)


.

(50)

It is important to recognize that in the case of electrons partly
or wholly localized at the nodes of 2-SEL system, such that
all hoping constants ts1,kl and ts2,r′u′ are zero, we have no
quantum entanglement between 2-SELs if it populates one
energetic level and its Hamiltonian becomes diagonal. It brings
the following energy eigenstates:

|E1〉 =



1

0

0

0

0

0

0

0

0


, .. |E9〉 =



0

0

0

0

0

0

0

0

1


, (51)

and Hamiltonian of system simulating two electrostatically
charged insulators has the following structure

Ĥ =



q11
0 0 0 0 0 0 0 0

0 q12
0 0 0 0 0 0 0

0 0 q13
0 0 0 0 0 0

0 0 0 q12 0 0 0 0 0

0 0 0 0 q11 0 0 0 0

0 0 0 0 0 q12
0 0 0

0 0 0 0 0 0 q13
0 0

0 0 0 0 0 0 0 q12
0

0 0 0 0 0 0 0 0 q11


,

(52)

what brings following eigenenergy values

E1 = q11
, E2 = q12

, E3 = q13
, E4 = q12

, E5 = q11
,

E6 = q12
, E7 = q13

, E8 = q12
, E9 = q11

.

(53)



VII. APPENDIX B: DETAILS OF ANALYTICAL SOLUTION FOR CASE OF COUPLED SELS

We continue derivation of the equation of motion imposed by classical picture of 2-SELs and from Hamiltonian 29 we
obtain the following expression for velocity of interacting particles with positions x1(t) = −x2(t) and velocity vs time as∫

dv√
q4(Ec −mv2))4 − d2(Ec −mv2)6

=
d2

q4

∫
du√

(Ecdq − u)

1

u2
√

1− u2
= s1

∫
du√

(s− u)

1

u2
√

1− u2
. (54)

Setting s1 = d2

q4 and s = Ecd
q , we obtain the integral s1

∫
du√
(s−u)

1
u2
√

1−u2
that has the solution as

s1

∫
du√

(s− u)

1

u2
√

1− u2
=

s1

s
√

1− u2

[(
u2 − 1

)√
s− u

u
+

+
i(s− 1)

√
s− u

√
u−1
s−1

(
EllipticE

(
i sinh−1

(√
u−s
s+1

)
, s+1
s−1

)
− EllipticF

(
i sinh−1

(√
u−s
s+1

)
, s+1
s−1

))
√

u−s
u+1

+

+
is
√
s− u

√
u−1
s−1 EllipticF

(
i sinh−1

(√
u−s
s+1

)
, s+1
s−1

)
√

u−s
u+1

−

(√
s− 1 +

√
s+ 1

) (√
s− 1−

√
s− u

)2√ √
s−1(

√
s+1−

√
s−u)

(
√
s−1+

√
s+1)(

√
s−1−

√
s−u)

√ √
s−1(

√
s−u+

√
s+1)

(
√
s−1−

√
s+1)(

√
s−u−

√
s−1)

√
s
(
s−
√
s− 1

√
s+ 1− 1

) ×

×

√√
s− 1

√
s− u−

√
s+ 1

√
s− u+ s−

√
s− 1

√
s+ 1− 1(√

s− 1 +
√
s+ 1

) (√
s− 1−

√
s− u

) ×

×

[ (√
s− 1 +

√
s
)

EllipticF

(
sin−1

(√(√
s− 1−

√
s+ 1

) (√
s− 1 +

√
s− u

)(√
s− 1 +

√
s+ 1

) (√
s− 1−

√
s− u

)) , (√s− 1 +
√
s+ 1

)2(√
s− 1−

√
s+ 1

)2
)

−2
√
s− 1×

×EllipticPi

[(√s− 1−
√
s
) (√

s− 1 +
√
s+ 1

)(√
s− 1 +

√
s
) (√

s− 1−
√
s+ 1

) , sin−1

(√(√
s− 1−

√
s+ 1

) (√
s− 1 +

√
s− u

)(√
s− 1 +

√
s+ 1

) (√
s− 1−

√
s− u

)) ,(√
s− 1 +

√
s+ 1

)2(√
s− 1−

√
s+ 1

)2 ]

−

(√
s− 1 +

√
s+ 1

) (√
s− 1−

√
s− u

)2√ √
s−1(

√
s+1−

√
s−u)

(
√
s−1+

√
s+1)(

√
s−1−

√
s−u)

√ √
s−1(

√
s−u+

√
s+1)

(
√
s−1−

√
s+1)(

√
s−u−

√
s−1)

√
s
(
−s+

√
s− 1

√
s+ 1 + 1

) ×

×

√√
s− 1

√
s− u−

√
s+ 1

√
s− u+ s−

√
s− 1

√
s+ 1− 1(√

s− 1 +
√
s+ 1

) (√
s− 1−

√
s− u

) ×

×
[ (√

s− 1−
√
s
)

EllipticF

(
sin−1

(√(√
s− 1−

√
s+ 1

) (√
s− 1 +

√
s− u

)(√
s− 1 +

√
s+ 1

) (√
s− 1−

√
s− u

)) , (√s− 1 +
√
s+ 1

)2(√
s− 1−

√
s+ 1

)2
)]

−2
√
s− 1EllipticPi

[(√s− 1 +
√
s
) (√

s− 1 +
√
s+ 1

)(√
s− 1−

√
s
) (√

s− 1−
√
s+ 1

) ,
sin−1

(√(√
s− 1−

√
s+ 1

) (√
s− u+

√
s− 1

)(√
s− 1 +

√
s+ 1

) (√
s− 1−

√
s− u

)) , (√s− 1 +
√
s+ 1

)2(√
s− 1−

√
s+ 1

)2 ]
]
, (55)

where EllipticF[., .] is the elliptic integral of the first kind, EllipticE[., .] is the elliptic integral of the second kind and
EllipticPi[., .] is the complete elliptic integral of the third kind as in accordance with nomenclature used by Mathematica
symbolic software [14].



VIII. APPENDIX C: DETAILS OF ANTICORRELATION FUNCTION CALCULATION FOR THE CASE OF WEAK MEASUEMENT
PERFORMED ON THE 2-SELS

We refer to the Hamiltonian of 2-SEL system coupled to flying qubit given by equation (44) and we recognize that the
time-dependent Hamiltonian ĤAC(t) and evolution operator based on it is as follows

e
1
~i

∫ t
0

(ĤAC(t′)×ÎB)dt′ = (56)



e
1
~i

∫ t
0 Ec1′′1(t′)dt′

0 0 0 0 0 0 0

0 e
1
~i

∫ t
0 Ec1′′1dt

′
0 0 0 0 0 0

0 0 e
1
~i

∫ t
0 Ec2′′1(t′)dt′

0 0 0 0 0

0 0 0 e
1
~i

∫ t
0 Ec2′′1(t′)dt′

0 0 0 0

0 0 0 0 e
1
~i

∫ t
0 Ec1′′2(t′)dt′

0 0 0

0 0 0 0 0 e
1
~i

∫ t
0 Ec1′′2(t′)dt′

0 0

0 0 0 0 0 0 e
1
~i

∫ t
0 Ec2′′2(t′)dt′

0

0 0 0 0 0 0 0 e
1
~i

∫ t
0 Ec2′′2dt

′



.

Now we are defining the correlation function for 2-SELs in case of the system interaction with the external flying qubit
given by the matrix

CAB,C = ÎC × ĈAB =

(
1 0

0 1

)
×


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 =



+1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 +1 0 0 0 0

0 0 0 0 +1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 +1


. (57)

Now we construct Hamiltonian for non-interacting C and AB physical systems given as

Ĥ = ÎC × ĤAB + ĤC × ÎAB =

=

(
ĤAB 0̂4×4

0̂4×4 ĤAB

)
+



ĤC [1, 1] 0 0 0 ĤC [1, 2] 0 0 0

0 ĤC [1, 1] 0 0 0 ĤC [1, 2] 0 0

0 0 ĤC [1, 1] 0 0 0 ĤC [1, 2] 0

0 0 0 ĤC [1, 1] 0 0 0 ĤC [1, 2]

ĤC [2, 1] 0 0 0 ĤC [2, 2] 0 0 0

0 ĤC [2, 1] 0 0 0 ĤC [2, 2] 0 0

0 0 ĤC [2, 1] 0 0 0 ĤC [2, 2] 0

0 0 0 ĤC [2, 1] 0 0 0 ĤC [2, 2]


=



=



Ep1 + E
p1′ + Ec1 t

s1′2′ ts12 0 0 0 0 0

t∗
s1′2′ Ep1 + E

p2′ + Ec2 0 ts12 0 0 0 0

t∗s12 0 Ep2 + E
p1′ + Ec2 t

s1′2′ 0 0 0 0

0 t∗s12 t∗
s1′2′ Ep2 + E

p2′ + Ec1 0 0 0 0

0 0 0 0 Ep1 + E
p1′ + Ec1 t

s1′2′ ts12 0

0 0 0 0 t∗
s1′2′ Ep1 + E

p2′ + Ec2 0 ts12

0 0 0 0 t∗s12 0 Ep2 + E
p1′ + Ec2 t

s1′2′
0 0 0 0 0 ts12 t∗

s1′2′ Ep2 + E
p2′ + Ec1


+

+



E
p1′′ 0 0 0 t

s1′′2′′ 0 0 0

0 E
p1′′ 0 0 0 t

s1′′2′′ 0 0

0 0 E
p1′′ 0 0 0 t

s1′′2′′ 0

0 0 0 E
p1′′ 0 0 0 t

s1′′2′′
t∗
s1′′2′′ 0 0 0 E

p2′′ 0 0 0

0 t∗
s1′′2′′ 0 0 0 E

p2′′ 0 0

0 0 t∗
s1′′2′′ 0 0 0 E

p2′′ 0

0 0 0 t∗
s1′′2′′ 0 0 0 E

p2′′


=



Ep1 + E
p1′ + Ec1 t

s1′2′ ts12 0 t
s1′′2′′ 0 0 0

t∗
s1′2′ Ep1 + E

p2′ + Ec2 0 ts12 0 t
s1′′2′′ 0 0

t∗s12 0 Ep2 + E
p1′ + Ec2 t

s1′2′ 0 0 t
s1′′2′′ 0

0 t∗s12 t∗
s1′2′ Ep2 + E

p2′ + Ec1 0 0 0 t
s1′′2′′

t∗
s1′′2′′ 0 0 0 Ep1 + E

p1′ + Ec1 t
s1′2′ ts12 0

0 t∗
s1′′2′′ 0 0 t∗

s1′2′ Ep1 + E
p2′ + Ec2 0 ts12

0 0 t∗
s1′′2′′ 0 t∗s12 0 Ep2 + E

p1′ + Ec2 t
s1′2′

0 0 0 t∗
s1′′2′′ 0 ts12 t∗

s1′2′ Ep2 + E
p2′ + Ec1


+

+diag(E
p1′′ , Ep1′′ , Ep1′′ , Ep1′′ , Ep2′′ , Ep2′′ , Ep2′′ , Ep2′′ ).

We recognize that diagonal elements of ÎC × ĤAB + ĤC × ÎAB are

(Ep1 + Ep1′ + Ec1 + Ep1′′ , Ep1 + Ep2′ + Ec2 + Ep1′′ , Ep2 + Ep1′ + Ec2 + Ep1′′ , Ep2 + Ep2′ + Ec1 + Ep1′′ ,

Ep1 + Ep1′ + Ec1 + Ep2′′ , Ep1 + Ep2′ + Ec2 + Ep2′′ , Ep2 + Ep1′ + Ec2 + Ep2′′ , Ep2 + Ep2′ + Ec1 + Ep2′′).

Now we consider the interaction between qubits C and A denoted by HCA and it will be incoroporated into global Hamiltonian
ĤCA × ÎB that has the following diagonal matrix representation

ĤCA =


Ec1′′1(t) 0 0 0

0 Ec1′′2(t) 0 0

0 0 Ec2′′1(t) 0

0 0 0 Ec2′′2(t)

 (58)

and consequently

ĤCA × ÎB =



Ec1′′1(t) 0 0 0 0 0 0 0

0 Ec1′′1(t) 0 0 0 0 0 0

0 0 Ec1′′2(t) 0 0 0 0 0

0 0 0 Ec1′′2(t) 0 0 0 0

0 0 0 0 Ec2′′1(t) 0 0 0

0 0 0 0 0 Ec2′′1(t) 0 0

0 0 0 0 0 0 Ec2′′2(t) 0

0 0 0 0 0 0 0 Ec2′′2(t)


. (59)

We have the total Hamiltonian for the flying qubit interacting with 2-SELs given as

Ĥ = ÎC × ĤAB + ĤC × ÎAB + Ĥ(t)CA × ÎB . (60)

We recognize that the diagonal terms of total matrix are given as a following sequence
(Ep1 + E

p1′ + Ec1 + E
p1′′ + E

c1′′1(t), Ep1 + E
p2′ + Ec2 + E

p1′′ + E
c1′′1(t), Ep2 + E

p1′ + Ec2 + E
p1′′ + E

c1′′2(t), Ep2 + E
p2′ + Ec1 + E

p1′′ + E
c1′′2(t),

Ep1 +E
p1′ +Ec1 +E

p2′′ +E
c2′′1(t), Ep1 +E

p2′ +Ec2 +E
p2′′ +E

c2′′1(t), Ep2 +E
p1′ +Ec2 +E

p2′′ +E
c2′′2(t), Ep2 +E

p2′ +Ec1 +E
p2′′ +E

c2′′2(t)). Setting
Ep1 = Ep1′ = Ep1′′ = Ep2 = Ep2′ = Ep2′′ = Ep, we obtain diagonal terms as

(Ec1 + 3Ep + Ec1′′1(t), Ec2 + 3Ep + Ec1′′1(t), Ec2 + 3Ep + Ec1′′2(t), 3Ep + Ec1 + Ec1′′2(t),

Ec1 + 3Ep + Ec2′′1(t), 3Ep + Ec2 + Ec2′′1(t), 3Ep + Ec2 + Ec2′′2(t), 3Ep + Ec1 + Ec2′′2(t)). (61)

Substracting element 3Ep + Ec1 we obtain

Ec1′′1(t), Ec2 − Ec1 + Ec1′′1(t), Ec2 − Ec1 + Ec1′′2(t), Ec1′′2(t),

Ec2′′1(t), Ec2 − Ec1 + Ec2′′1(t), Ec2 − Ec1 + Ec2′′2(t), Ec2′′2(t)). (62)



Now we are constructing the density matrix for the case of non-interacting qubit C with 2-SELs denoted as AB system. We
assume that qubit C is in the ground state and that symmetric 2-SELs line is populated at energy E1 or E2. In such a case,
the density matrices are as follows

ρ̂C =

(
+ 1

2 − 1
2

− 1
2 + 1

2

)
, ρ̂AB =


+ 1

2 0 0 − 1
2

0 0 0 0

0 0 0 0

− 1
2 0 0 + 1

2

 (63)

Therefore, the density matrix of non-interacting qubit C with 2-SELs line denoted as AB system is given as

ρ̂ABC =

(
+ 1

2 − 1
2

− 1
2 + 1

2

)
×


+ 1

2 0 0 − 1
2

0 0 0 0

0 0 0 0

− 1
2 0 0 + 1

2

 =



+ 1
4 0 0 − 1

4 − 1
4 0 0 + 1

4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

− 1
4 0 0 + 1

4 + 1
4 0 0 − 1

4

− 1
4 0 0 + 1

4 + 1
4 0 0 − 1

4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

+ 1
4 0 0 − 1

4 − 1
4 0 0 + 1

4


. (64)

The density matrix follows the equation of motion

ρ(t) = e
1
i~

∫ t
0
H(t′)dt′



+ 1
4 0 0 − 1

4 − 1
4 0 0 + 1

4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

− 1
4 0 0 + 1

4 + 1
4 0 0 − 1

4

− 1
4 0 0 + 1

4 + 1
4 0 0 − 1

4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

+ 1
4 0 0 − 1

4 − 1
4 0 0 + 1

4


e−

1
i~

∫ t
0
H(t′)dt′ . (65)

Since the structure of the Hamiltonian matrix Ĥ(t) = ÎC × ĤAB + ĤC × ÎAB + ĤCA(t) × ÎB describing the interaction
of three electrons confined to the flying position-based qubit C and 2-SEL system is known at all instances of time in the
analytical way as well as the operators e±

1
i~

∫ t
0
H(t′)dt′ are known in the analytical way, the structure of the density matrix is

known in the analytical way. This implies our full knowledge of the qubit C state and 2-SELs system at any instance of time
thanks to the formula (41). Such reasoning opens the perspective of analytical approach towards quantum N -body electron
(hole) system confined to the three disconnected graphs of quantum dots of any topology in the 3D space subjected to the
steering mechanism from voltage polarization applied to CMOS gates, as depicted in Fig.1. It is thus the subject of the future
more detailed studies with use of both analytical and numerical tools. It also opens the perspective on new experiments and
new technological novelties in the area of cryogenic CMOS single-electron device electronics that have both importance in the
implementation of quantum computer as well as in the development of classical single electron electronics.
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