WLCG HEP-SCORE Deployment Task Force

Helge Meinhard / CERN-IT WLCG Grid Deployment Board 13 January 2021

CPU Benchmarks in WLCG

- Pre-2009: WLCG used a benchmark based on SPECint 2000 (part of SPEC-CPU 2000)
- At EOL, WLCG started looking into SPEC CPU 2006
 - C++ applications of both SPECint 2006 and SPECfp 2006 matched applications well
- Defined benchmark in January 2009 as HEP-SPEC06
- At EOL, WLCG started looking into SPEC CPU 2017
 - Found to be a bad match

HEP-SPEC06

- Benchmark: defining workload is not enough
 - Also need to describe the conditions of running
 - Chose conditions in 2009 that were as realistic as possible in view of CPU farms in use for **WLCG**
 - gcc version and flags, 32bit app, as many concurrent processes as cores, ...
 - Scaling behaviour of real workload within about 10% of benchmark
 - Conditions have changed much since then
 - 64bit, new compilers/versions, flags, SMP processors, multi-threaded applications or pilots launching identical binaries multiple times, VMs and containers, ...
 - Still maintained the initial choices
 - Scaling behaviour matching real workload still surprisingly well (often ~ 20% or better with some exceptions)

HEP-SPEC06 Usage

- From WLCG perspective, most importantly
 - Experiment requests and site pledges
 - Accounting of CPU usage
- Many sites also use it for procurements
- Initially designed as a tool for WLCG, found widespread use in other communities (not limited to HEP)

HEP-SPEC06 Criticism

- Individual reports of scaling deviations of 40% and more
 - Some suggested replacements turned out to be worse for typical workload mixes
- Benchmark workload not typical of HEP applications
 - Would the reasonable scaling persist with non-x86 CPUs, for example? Well, we didn't have that issue (yet)...
- Running HEP-SPEC06 requires a software licence from SPEC
 - Strong desire to consider licence-free benchmarks as successor
- Not representative of full machine potential, not representative of improved experiment workload
 - These are "features" rather than "bugs"

HEP-SPEC06: A Success Story

- Used successfully for more than ten years
- Key reasons IMO:
 - Benchmark defined as one single number
 - Definition did not change during the HEP-SPEC06 lifetime

Time to move on...

Future HEP Benchmarking (1)

- Pretty much like in 2007/2008, benchmark experts got together and worked on a new benchmark: HEPiX Benchmarking Working Group co-chaired by Manfred Alef (KIT), Domenico Giordano (CERN) and Michele Michelotto (INFN Padua)
 - Several reports to GDB, HEPiX, WLCG MB
 - Domenico's report to MB 26-May-2020: https://indico.cern.ch/event/917098/contributions/3855129/attachments/2045174/3426154/WLCG-MB-26-05-2020-giordano.pdf
 - Domenico's report to HEPiX 13-Oct-2020: https://indico.cern.ch/event/898285/contributions/4034096/attachments/2121862/3571531/HEPiX-Workshop-13-10-2020-giordano.
 - Without fixing the details of how to use it for a given purpose
 - With respect to 2008...2009, landscape has changed completely, which implies new challenges and new opportunities

Future HEP Benchmarking (2)

- Result of the HEPiX benchmarking working group:
 - "HEP Benchmark Suite": Framework itself (automatising benchmark runs, ensuring structured delivery and storage of results)
 - "HEP Workloads": Collection of (mostly) HEP workloads for which it is desirable to obtain performance information
 - Rather dynamic add improved workloads, new compilers/flags/OS, ...
 - Sometimes called "the matrix"
 - "HEP Score": Single number based on a defined, stable combination of defined, stable reference workloads; sample implementation ("HEP-SCORE20") using various LHC experiment workloads (from Run 2)
 - Good consistency with HEP-SPEC06

HEP-SCORE Deployment Task Force

- WLCG Management board discussed in May and July
 - Decided to launch a task force
- Following summer and an intense autumn with workshop etc. activities, task force started in November
- Bi-weekly meetings since then

Task Force Members (1)

- Experts on pledge etc. process / procurements
- Experiment experts
 - Four LHC experiments
 - Belle 2, DUNE, LIGO/Advanced VIRGO(/KAGRA), JUNO/BES III etc.
- Site experts
- Some MB members

10

Task Force Members (2)

Name	Function	Name	Function
Tommaso Boccali	CMS	Jeff Templon	Nikhef
Simone Campana	WLCG	Andrea Valassi	LHCb
Domenico Giordano	Benchmarking WG	Ian Collier	STFC-RAL
Michel Jouvin	Tier-2s	Gonzalo Merino	PIC
Walter Lampl	ATLAS	Fazhi Qi	JUNO, BES etc.
Andrew McNab	DUNE	Oxana Smirnova	NDGF
Helge Meinhard	WLCG and Convener	Tony Wong	US Tier-1s
Bernd Panzer	CERN	Josh Willis	LIGO/Adv. VIRGO
Stefano Piano	ALICE	Manfred Alef	KIT and Benchmarking WG
Randy Sobie	Belle 2		

13-Jan-2021

Task Force Topics

- Compute facilities at WLCG sites
 - Still very much x86 dominated (mostly Intel, some AMD)
- Compute facilities used (quasi-)opportunistically
 - Various processors (x86, POWER, ARM), e.g. at HPC sites
 - Various GPUs in various relations with CPUs, e.g. at HPC sites
 - May see some of this soon at WLCG sites, too even as part of the pledges
 - More may be coming, e.g. FPGAs

Discussions and Agreements So Far

- Start with CPU benchmarking on x86-based systems; look at other CPUs and/or GPUs later
 - Aim: single benchmark with a stable definition for at least (a typical CPU server lifetime cycle | a complete LHC machine cycle)
- Framework by benchmarking WG is very attractive
 - Use it to record behaviour of (wide) selection of workloads (not limited to HEP) across machines
- No "final" candidate for new benchmark yet
 - Intense discussions whether HEP-SCORE20 is a starting point, and whether HEP workloads should be used at all
 - Decision deferred to after we have got hold of actual experiment workloads (LHC: Run 3?) and have collected data of selection of workloads (see above)

13

What Next?

- Reporting and collecting feedback
 - Discussion at GDB following this presentation
 - Presentation at WLCG MB next week
- Task force plans
 - Round of status reports on workloads (ATLAS and ALICE to start with next week)
 - Implement workloads, once stable, into "the framework" for data collection
 - Once ready, run on a variety of CPU server configurations to obtain behaviour of all workloads
 - Define representative sample of workloads for the final benchmark (HEP-SCORE2x)
 - Including relative weights
 - Propose steps for transition from HEP-SPEC06 to HEP-SCORE2x

(Personal) Conclusions

- Defining a HEP-SPEC 06 successor is a complex, ambitious task
 - Will take many months rather than weeks
 - ... and then we will have to tackle non-x86 CPUs and GPUs
- Quite a number of different views on how exactly this should be done
 - Good representation in the task force
- Nonetheless, discussions in a constructive and collaborative spirit
 - Thanks to all task force members!

Questions? Comments?

