

Padova, Italy

Beam background simulation with the CLIC framework

Muon Collider Workshop

N. Bartosik

INFN Torino

Simulation workflow overview

Using the CLIC framework to perform GEANT4 simulation of detector hits Beam-induced background from MAP provided in *.dat text files

- 1. <u>Converting MARS *.dat → CLIC *.slcio file</u>
 - 1000 particles \times 23 (smeared in ϕ) \rightarrow 1 event [7K events/beam]
 - Each MCParticle is assigned with: mass, charge, PDG id, 3-position, 3-momentum, time
- 2. Running GEANT4 detector simulation with ddsim
 - using the CLIC detector geometry modified to fit the MAP nozzles
 - configurable physics list: QGSP_BERT_HP, QGSP_BERT, ...
 - **QGSP_BERT_HP** was used in MAP studies
 - more precise simulation of thermal neutrons
 - \times 10 slower than the default QGSP_BERT
- 3. Processed all background particles from the μ^{+} and μ^{-} beams
 - ~8 days at 8 parallel threads (only 1 event! Ideally need more. ~1K?)

Nazar Bartosik

Using the CLIC framework to perform GEANT4 simulation of detector hits:

Vertex Tracker, Inner Tracker, Outer Tracker, ECAL, HCAL, Muon Detector $(3 + 3 \times 2) \times 2$ $3 + 6 \times 2$ $3 + 4 \times 2$ $7 + 6 \times 2$

Nazar Bartosik

MARS particle properties

Verifying the proper conversion of MARS particles:
✓ consistent with MAP

Nazar Bartosik

MCParticle properties: PDG ID

Processed all MARS particles from the μ^- and μ^+ beams

Nazar Bartosik

MCParticles from MARS: production vertex

Plotting the MCParticle's production vertex position in Y:Z plane

Nazar Bartosik

Beam background simulation

µ⁻ beam

MCParticles from GEANT4: production vertex

Plotting the MCParticle's production vertex position in Y:Z plane

Nazar Bartosik

Beam background simulation

µ⁻ beam

Tracker hits: spatial distribution

Plotting the Vertex + Inner + Outer Tracker hit positions in Y:Z plane

biggest impact on the Vertex Tracker

Nazar Bartosik

Calorimeter + Muon hits: spatial distribution

Plotting the ECAL / HCAL / Muon Detector hit positions in Y:Z plane

µ⁻ beam

no pointer to the MCParticle in the default SLCIO -> ROOT conversion macro

Nazar Bartosik

Simulation optimisation

Simulation of the beam-induced background is very slow. Need to optimise.

- 1. <u>Use random mixing of chunks of the particles from different simulated cycles</u>
 - 1 full bkg. sample is currently split into 2×7K events (23K particles/event)

2. <u>Use a faster-performing physics list if possible</u>

- have to make sure that simulation results remain valid for our use case
- comparing simulation results between 2 GEANT4 physics lists:
 - **QGSP_BERT_HP:** used by MAP; most precise;
 - **QGSP_BERT:** less precise treatment of thermal neutrons; x10 faster;

Nazar Bartosik

Look at the faster physics list: QGSP_BERT

A number of clear differences at the level of MCParticles:

 μ^{-} beam

- fewer soft electrons;
- more soft neutrons; missing a huge chunk of charged hadrons;

Nazar Bartosik

MCParticles from GEANT4: production vertex

Nazar Bartosik

MCParticles from GEANT4: production vertex

Nazar Bartosik

Tracker hits: spatial distribution

Nazar Bartosik

Tracker hits: spatial distribution

No visible differences at the level of Tracker hits

µ⁻ beam QGSP_BERT

Nazar Bartosik

Calorimeter + Muon hits: spatial distribution

Noticeable difference in the # of calorimeter hits

spatial distribution remains the same between the 2 particle lists

µ⁻ beam

Tracker + Calorimeter hits: energy distribution

Comparing the deposited energy in Tracker and Calorimeter hits

- Tracker hits separated by particle type
- Calorimeter/Muon hits shown all together

Nazar Bartosik

Beam background simulation

. QGSP_BERT_HP

 μ^{-} beam

Tracker + Calorimeter hits: energy distribution

A couple of significant differences are clearly visible

- less Inner/Outer Tracker hits from e[±] and n
- less low-energy ECAL/HCAL hits

µ⁻ beam QGSP_BERT

Nazar Bartosik

Summary

Detector simulation workflow is already in place

- CLIC framework + adapted detector geometry + MARS15 background
- simulation results consistent with MAP

Performance is the main issue

- ~8 days to simulate one event
- $\boldsymbol{\cdot}$ $\times 2\text{-}4$ improvement possible with more virtual machines
- further ×10 improvement possible with faster physics list (but underestimated occupancy in Outer Tracker + ECAL + HCAL)