

b-tagging at Muon Collider

Lorenzo Sestini INFN-Padova

Muon Collider Workshop – CERN, 11-9-2019

b-jet tagging algorithm

b-jet tagging algorithm inspired by LHCb:

- 1) Tracks with p_T>500 MeV and impact parameter>0.04 cm are selected
- 2) 2-tracks vertices are formed by requiring a distance of closest approach < 0.02 cm and $p_{\tau}(2\text{-tracks}) > 2 \text{ GeV}$
- 3) 2-tracks vertices are linked if they share one track → 3-tracks vertices are formed

Without beam-induced background (with complete tracking)

b-tagging \sqrt{s} = 125 GeV vs \sqrt{s} = 1.5 TeV

SV invariant mass [GeV]

SV-tagging efficiency (125 GeV) = 63%

SV invariant mass [GeV]

SV-tagging efficiency (1.5 TeV) = 69%

Without beam-induced background (with complete tracking)

Jets are more boosted → higher flight distance

b-jet tagging studies

Input tracks p₊

- → Due to framework limitations, we were not able to perform a complete in the presence of the beam-induced background.
- → Inefficiencies at low track p_T reduce significantly the tagging efficiency.

b-tagging

Input tracks IP vs φ

b-tagging

Input tracks IP vs p_T

b-jet tagging studies

Secondary Vertex observables

$$\tilde{t} = \frac{m(B) \cdot FD}{p}$$

Negative lifetime: negative SV projection along the jet axis (false tag)

- Beam-induced background produces fake SV
- SV-related observables show different properties between signal and beam-induced background.
- It is evident that a proper algorithm (e.g DNN) could remove the combinatorial preserving the efficiency.

b-tagging efficiency

Without the beam-induced background at 1.5 TeV the SV-tagging efficiency was 69%

• Mistag: the
$$(\eta-\phi)$$
 space is divided in cones with R=0.5

$$\omega = \frac{N_{with SV}^{cone}}{N^{cone}}$$

The mistag is ~1-3%

Implementation

INFN
Istituto Nazionale di Fisica Nucleare

- Until now for b-tagging a root macro has been used
- Not the best way to go: in the future we should use the b-tagging embedded in the ILCsoft framework

```
cout << "#good tracks in jet = " << ntracks << endl;
//2-tracks secondary vertices
Int_t nTwoTrVx=0;
Double_t TwoTrVx_X[2000000]={0};
Double t TwoTrVx Y[2000000]={0};
Double_t TwoTrVx_Z[2000000]={0};
Double_t TwoTrVx_TrId1[2000000]={-1};
Double_t TwoTrVx_TrId2[2000000]={-1};
for (int i=0; i<ntracks; i++) {
 for (int j=i+1; j<ntracks; j++) {
 Double_t x1[3];
 Double_t x2[3];
 IlcAODTrack *tr1 = ev->GetTrack(injet flag[i]);
 IlcAODTrack *tr2 = ev->GetTrack(injet_flag[j]);
 tr1->GetXYZ(x1);
 tr2->GetXYZ(x2);
 TVector3 v1(tr1->Px(), tr1->Py(), tr1->Pz() );
 TVector3 p1( x1[0], x1[1], x1[2] );
 TVector3 v2(tr2->Px(), tr2->Pv(), tr2->Pz());
 TVector3 p2( x2[0], x2[1], x2[2] );
 TVector3 r = p1 - p2;
 Double t a = v1.Mag2();
 Double t b = v1.Dot(v2);
 Double_t c = v2.Mag2();
 Double t d = v1.Dot(r);
 Double_t e = v2.Dot(r);
 Double_t t1 = (b*e - c*d)/(a*c - b*b);
 Double t t2 = (a*e - b*d)/(a*c - b*b);
 TVector3 r1 = p1 + t1 * v1;
 TVector3 r2 = p2 + t2 * v2;
 TVector3 dv = r1-r2;
 TVector3 sv = 0.5*(r1+r2);
 Double_t FD = sv.Mag();
 Double_t dist = dv.Mag();
 TVector3 p_tot = v1+v2;
 Double_t pt_tot = sqrt (pow(p_tot.X(),2) + pow(p_tot.Y(),2));
 if (dist<0.02) h_pt2->Fill(pt_tot);
```

b-tagging in ILCsoft

- Secondary vertex reconstruction
- BDTs trained with SV+ jet constituents inputs

Figure 1: The flavor tagging performance, evaluated on $Z \to q\overline{q}$ sample at $\sqrt{s} = 91.2$ GeV, is shown in terms of the misidentification fraction versus the tagging efficiency. (a) The tagging efficiency is shown for b jets. The green (circle) points show the fraction of c jets being mistaken as a b jet. The blue (square) points show the fraction of d jets being mistaken as a d jet. (b) The tagging efficiency is shown for d jets. The red (circle) points show the fraction of d jets being mistaken as a d jet. The blue (square) points show the fraction of d jets being mistaken as a d jet.

Working plan

- Tracking and jet reconstruction are needed!
- Setup the tagging algorithm already implemented in ILCsoft
- Measure the SV-tagging efficiencies
- Train the BDTs to improve the identification performance

Backup slides