CTA RAO investigation

> Vladimír Bahyl IT Department February 2021

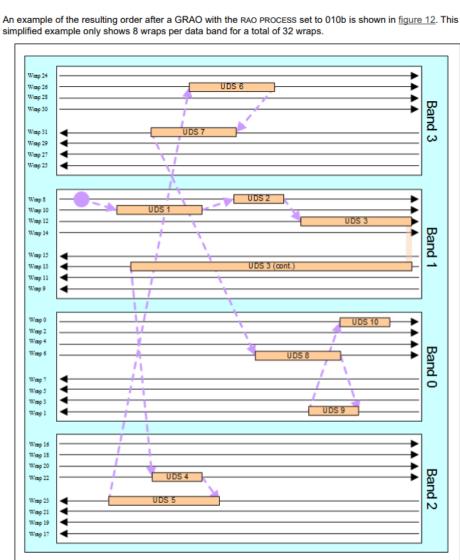
What is RAO?

Spectra Logic TAOS

CERN RAO

Tests and Comparison

Conclusion



What is RAO?

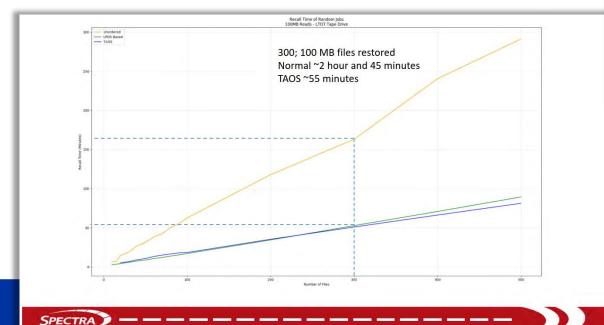
Recommended access order (RAO):

A feature of the 3592E07 and later drives is the ability to accept a list of User Data Segments (see 4.27.1.1) and reorder those User Data Segments into a recommended access order that minimizes the time to read those User Data Segments.

A User Data Segment (UDS) is defined as a grouping of contiguous logical objects (i.e., logical blocks and filemarks) and is described by partition number, beginning logical object identifier, and ending logical object identifier.

Note: The UDS numbers represent the sorted output order (i.e. the recommended access order). The sort is based on the current position (i.e., the light purple circle in the figure). The order of the resultant RAO list is independent of the order in the Generate Recommended Access Order parameter list.

Figure 12 — Example Reordering of UDS's



GA32-0968-05

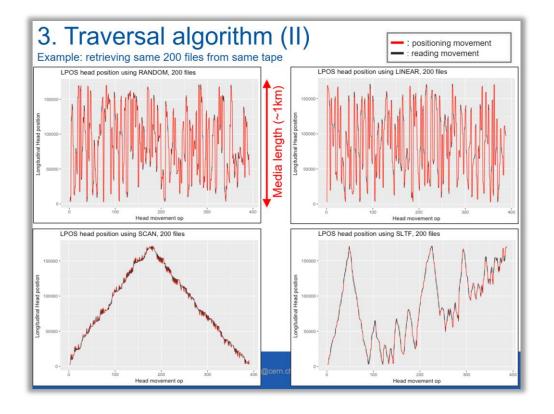
Spectra Logic TAOS

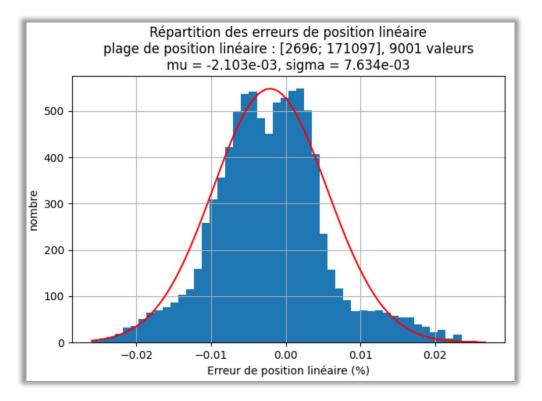
Time-Based Access Order System (TAOS™)

- <u>https://spectralogic.com/wp-content/uploads/white_paper_increasing_file_read_throughput_on_tape_with_taos.pdf</u>
- <u>https://www.fujifilmsummit.com/wp-content/uploads/2018/</u> 06/Spectra-Logic-Matt-Starr.pdf
- <u>https://hpc.csiro.au/users/dmfug/Meeting_Jun2018/</u> <u>Presentations/Spectra_2018.pdf</u>

Media and Drive Wear Reduction Testing with TAOS

- A test was performed with 100 files with a file size between 1-100MB:
- TAOS Meters of Tape Across the Drive Head: 2,470
- Unordered Meters of Tape Across the Drive Head: 31,878
- That's a ~13x reduction in meters of tape. Or 8.4% of the original meters of tape.
- Spectra currently estimates that TAOS will reduce tape and drive wear by ~10X on media read operations when used in conjunction with HPSS 7.5 or later
- Releasing with major archive packages


SPECTRA


Wrap 0
Wrap 1
Wrap 2
Wrap 3
Wrap 4
Wrap 5

CERN SCSI REOWP RAO

Germán Cancio Meliá

<u>https://indico.cern.ch/event/730908/contributions/3153156/</u>

Paul Vriet

<u>http://cds.cern.ch/record/2728741/</u>

CERN SCSI REOWP RAO

Based on estimating the block position within the wrap Works reasonably well with incompressible files Needs further enhancements if not at BOT

Examp	e of sg_	raw	-r	10k	/d	ev/	sg2	a3	1f	45	20	00	0 f	ff	f ff	ff	00 00	output:											
SCSI S	tatus:	Goo	d																										
Receiv	ed 1996	by [.]	tes	of	dat	ta:																							
00	07 ca	00	00	00	00	00	00	00	00	00	00	00	03	2a	9c				*.				wr	apId	<mark>,</mark> enc	<mark>lOfW</mark> r	apBlo	<mark>ockI</mark>	d
10	00 01	. 00	00	00	00	00	00	00	06	57	22	00	02	00	00			W"	•••				0,	2075	16				
20	00 00	00	00	00	09	85	e6	00	03	00	00	00	00	00	00				••				1,	<mark>4155</mark>	22				
30	00 00	b4	3e	00	04	00	00	00	00	00	00	00	0f	e0	e2		>		••				2,	<mark>6241</mark>	02				
40	00 05	00	00	00	00	00	00	00	13	0f	47	00	06	00	00			G	••				3,	8325	74				
50	00 00	00	00	00	16	3e	02	00	07	00	00	00	00	00	00		>		••				4,	1040	610				
60	00 19	6c	43	00	80	00	00	00	00	00	00	00	1c	9b	39		1C		9			-	5,	1249	095				
70	00 09	00	00	00	00	00	00	00	1f	c9	9a	00	0a	00	00				•••				6,	1457	666				
80	00 00	00	00	00	22	f8	92	00	0b	00	00	00	00	00	00		" .		•••				7,	1666	115				
90	00 26	26	fa	00	0c	00	00	00	00	00	00	00	29	55	b8		. & &)	υ.				8,	1874	745				
a0	00 Oc	00	00	00	00	00	00	00	2c	84	10	00	0e	00	00			•••••	•••				9,	2083	226				
b0	00 00	00	00	00	2f	b2	f8	00	0f	00	00	00	00	00	00		/ .		•••				10	,229	<mark>1858</mark>	3			
c0	00 32	e1	2b	00	10	00	00	00	00	00	00	00	36	10	19		.2.+		5					-					_
dØ	00 11	00	00	00	00	00	00	00	39	3e	80	00	12	00	00			9>	••										
e0	00 00	00	00	00	3c	6d	59	00	13	00	00	00	00	00	00			ιY											
fØ	00 3f	9b	92	00	14	00	00	00	00	00	00	00	42	са	5f		. ?	E	3.										
100	00 15							00	45	f8	сс	00	16	00	00			E											

Description of RAO tests

Using LTO-8 tapes

• But the base research was done using LTO-7M cartridges

Two types of data:

- 1. Larger incompressible files
- 2. Many small highly compressible files

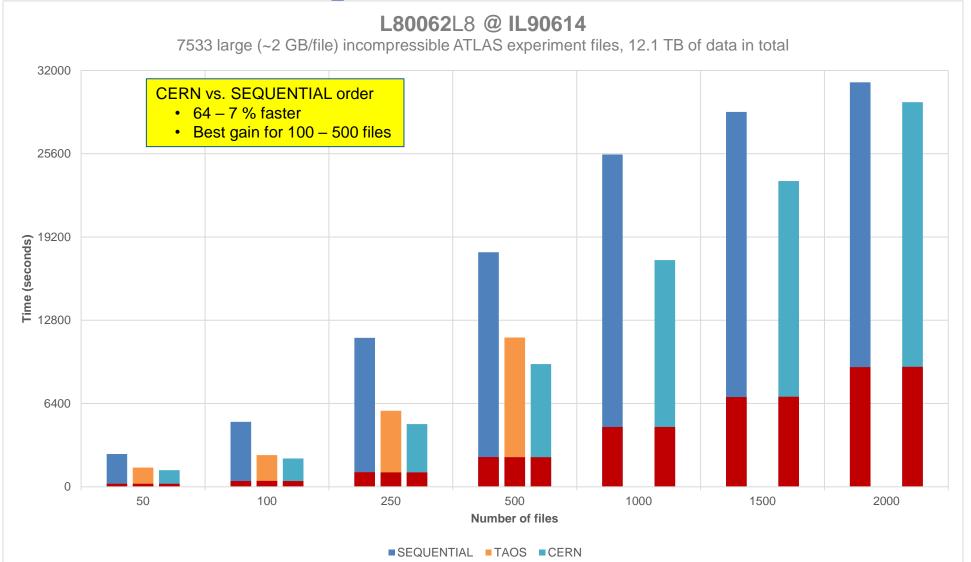
GRAO / RRAO TAOS queries and subsequent recalls always start from BOT

• mt eject ; mt load ; mt rewind

Increasing the number of selected random files from each tape:

- 50, 100, 250, 500, 1000, 1500, 2000 (TAOS results are only up to 500 files due to problems with my setup)
- Using same list of files with each solution

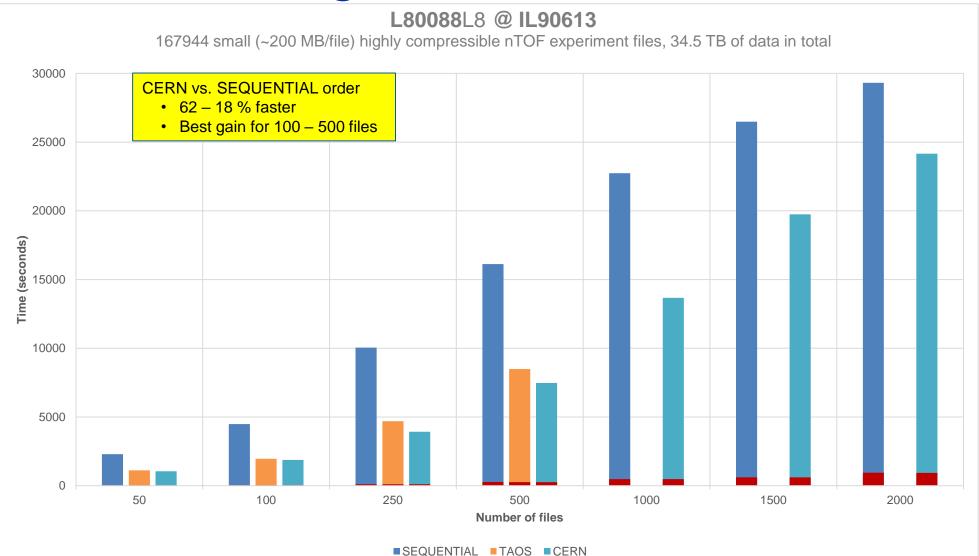
Position to the 1st block of each file according to the given order:


Sequential ascending, TAOS, CERN

Read the file until EOF mark

Measure total seek and read time (in seconds)

CTA RAO investigation



February 2021

Vladimír Bahyl | LHC Run 3 tape infrastructure plans

CTA RAO investigation

February 2021

Vladimír Bahyl | LHC Run 3 tape infrastructure plans

Conclusion

Several solutions now exist to increase the reading performance of LTO.

CTA has successfully implemented RAO for drives that do not support it natively and read performance improvements have been demonstrated.

When recalling less than 500 files from tape, CTA RAO solution can decrease the positioning time by 50% or more.

