Tape Storage at BNL Pre-GDB - Tape Evolution

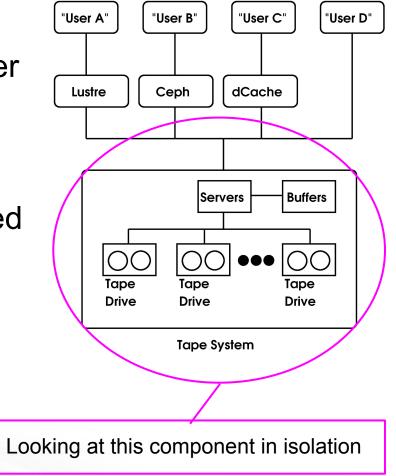
Scientific Data and Computing Center Brookhaven National Laboratory Shigeki Misawa February 9, 2021

BROOKHAVEN SCIENCE ASSOCIATES

Tape Mass Storage at BNL

- Used for near-line and archival storage of NP/HEP data
- Multiple factors driving closer look at mass storage
 - Significantly higher bandwidth, larger data volumes and greater read access for ATLAS in the HL-LHC era and sPHENIX at RHIC.
 - Storage technologies evolving at different rates.
 - Migration to new data center, with no migration of existing EOL equipment
 - Optimizing future investments requires detailed plans
- This presentation analyzes the effects of data volume and access bandwidth on the cost of tape and disk mass storage solutions

Estimating Cost of Disk vs Tape


- This cost analysis focuses primarily on the system and assumes or includes the following:
 - "Greenfield" deployment No migration cost to switch between tape and disk. No legacy data.
 - Evolution of technologies taken from roadmaps, public vendor comments, or historical projections
 - Assumes specific implementations of a tape and disk systems
 - Operational power and cooling costs
 - \$0.06/KWH for "Industrial Electric Power" costs in NY
 - Estimated facility PUE (1.25) used to calculate cooling costs
 - Assumes 24x7 availability and operation of equipment
 - Network costs are included

Costs Not Included in Analysis

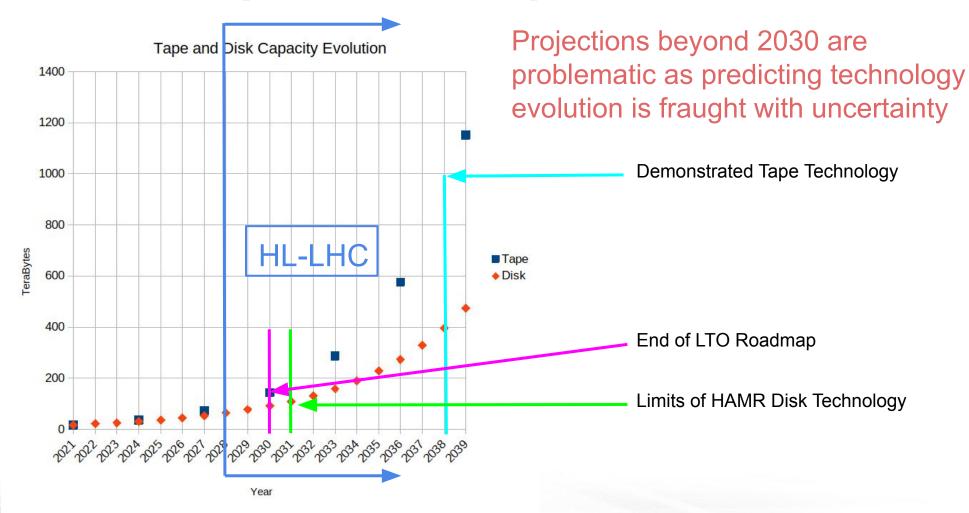
- Ignored factors include
 - Organizational Manpower costs, multi-customer cost sharing opportunities
 - Infrastructure Analysis assumes power, space, cooling infrastructure are available
 - Alternate system implementations not considered
 - e.g. Tiered disk storage, drive spin down, etc
 - Alternate tape software and hardware
 - Inter storage hierarchy optimization
 - Analysis looks only at the mass storage system.
 - Cost savings of collapsing storage hierarchies not investigated
 - Inefficient utilization of resources

Technology Evolution

• <u>Tape Parameters</u>

- Use LTO.org capacity roadmap
 - Capacity doubles each generation
- \circ $\,$ 20%/yr reduction in \$/TB for media $\,$
- Utilization of 90% of max tape drive bandwidth [1]
- 3 years between generations
- 9 year media refresh cycle
 - LTO-N copied to LTO-(N+3)
- 20% tape drive BW increase per generation

• Disk Parameters


- 20%/yr HDD capacity increase
- 20%/yr reduction in \$/TB
- 5 year refresh cycle
- Constant 250 MB/sec r/w bandwidth (single actuator)
- Power Consumption
 - 10W single actuator
 - 15W dual actuator
- PMR/HAMR disks (no SMR)

[1] Does not account for sparse reads of tape media, i.e., assumes no tape head seeks

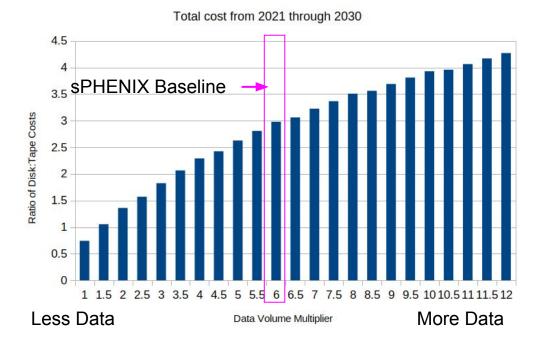
Disk and Tape Roadmap Limitations

Disk/Tape System Assumptions

- Tape System
 - HPSS-like solution
 - Library w/ 20K cartridge capacity
 - Library deployed in 10K
 cartridge capacity increments
 - Maintain 5% free slot capacity at all times
 - Tape drives needed for media migration included
 - 20 year library life

- Disk System
 - Single QOS system
 - dCache/Lustre/Ceph solution
 - Maintain 10% free space
 - 20% EC/ECC overhead
 - 500MB/sec "LUN" write performance
 - 10GB/sec capable servers
 - 400 disks per server

Comments on Disk/Tape


- Disk and tape are fundamentally different
 - · Differences in data durability need to be acknowledged
- Disks are an "online" media
 - Disks are electrically energized at all times
 - Disk systems are online at all times
 - "Disk copies aren't backups"
- Tapes are an "offline" media
 - Tapes only exposed to electrical issues when mounted
 - Potentially safer from ransomware and accidental deletion
 - Tape media life is substantially longer than disk

Cost Comparison for sPHENIX at RHIC

Ratio of Disk: Tape Cost vs Collected Data Volume

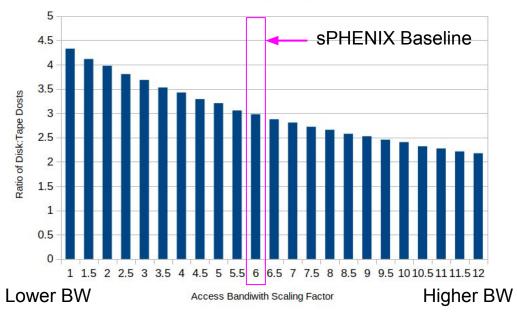
Ratio of total cost as a function of collected data volume

Data Volume = 120 PB x Data Volume Multiplier Peak BW = 30 GB/sec Data collection period - 2021 thru 2024

	Injested Data Volume Per Year (petabytes)									
	2021	2022	2023	2024	2025	2026	2027	2028	2029	
Multiplier										
1	10	20	30	60	0	0	0	0	0	
2	20	40	60	120	0	0	0	0	(
3	30	60	90	180	0	0	0	0	C	
4	40	80	120	240	0	0	0	0	C	
5	50	100	150	300	0	0	0	0	0	
6	60	120	180	360	0	0	0	0	(
7	70	140	210	420	0	0	0	0	(
8	80	160	240	480	0	0	0	0	0	
9	90	180	270	540	0	0	0	0	0	
10	100	200	300	600	0	0	0	0	(
11	110	220	330	660	0	0	0	0	(
12	120	240	360	720	0	0	0	0	(

- sPHENIX baseline data ingest ramp

Vary sPHENIX data ingest requirements Multiples of 10:20:30:60 ingest ramp sPHENIX baseline is 6 x (10:20:30:60) PB/yr



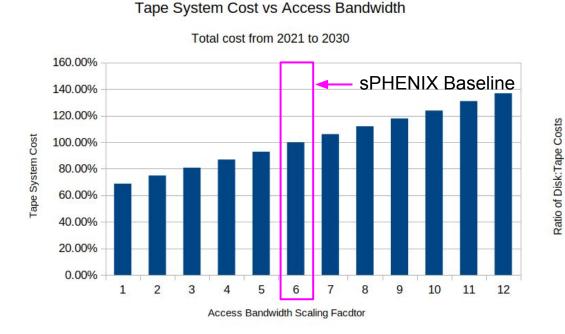
Cost Comparison for sPHENIX at RHIC

Ratio of Disk: Tape Cost vs Access Bandwidth

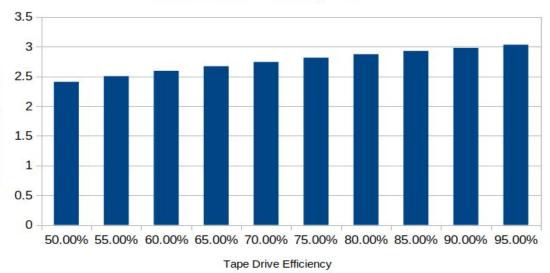
Total cost from 2021 through 2030

Peak BW = 5 GB/sec x BW Scaling Factor Total Collected Data Volume = 720 PB Data collection period - 2021 thru 2024

	Access Bandwidth Per Year (gigabytes/sec)									
	2021	2022	2023	2024	2025	2026	2027	2028	2029	
Multiplier										
1	1	5	5	5	5	5	0	0	(
2	2	10	10	10	10	10	0	0	(
3	3	15	15	15	15	15	0	0	(
4	4	20	20	20	20	20	0	0	(
5	5	25	25	25	25	25	0	0	(
6	6	30	30	30	30	30	0	0	(
7	7	35	35	35	35	35	0	0	(
8	8	40	40	40	40	40	0	0	(
9	9	45	45	45	45	45	0	0	(
10	10	50	50	50	50	50	0	0	(
11	11	55	55	55	55	55	0	0	(
12	12	60	60	60	60	60	0	0	3	


sPHENIX baseline bandwidth ramp

Vary sPHENIX access bandwidth requirements Multiples of 1:5:5:5:5 access BW ramp sPHENIX baseline is 6 x (1:5:5:5:5) GB/sec



Cost Comparison for sPHENIX at RHIC

Ratio of Disk: Tape Cost vs Tape Drive Efficiency

Total cost from 2021 through 2030

Tape system cost as a function of access Bandwidth

Ratio of total cost as a function of tape drive efficiency

Peak BW = 30 GB/sec Total Collected Data Volume = 720 PB Data collection period - 2021 thru 2024

Analysis Results

- Relative advantage between disk and tape changes with data volumes and bandwidth
 - Ratio of tape/disk cost decreases with increasing data volume
 - Ratio of tape/disk cost increases with increasing access BW
- Timing is important
 - Higher disk capacity makes disk more competitive at a given data volume
 - Tape/disk cost crossover point dependent on details

Analysis Results

- To first order, inefficient use of tape drive resources (nonsequential and non-contiguous access of data) can be modeled as lower performance tape drives.
 - Results in higher tape system costs.
- Cost of migrating from tape to disk likely to be high
 - Increases initial data volume
 - Requires supporting both tape and disk during transition period

Areas For Further Investigation

• Disk

- Merge front end and back end disk mass storage systems
- Hierarchical system
 - Multiple QOS partitions
- Utilize SMR drives
 - ~20% cost savings
 - Requires software
- \circ Spin down disks
 - Requires software (e.g. FreeNAS)
 - Reliability ?
- Tailor network to required QOS

• Tape

- More precise accounting of read/write inefficiencies
- Migration from multi-actuator HDD to SSD tape buffers
- Investigate enterprise tape technology
- Analysis of transition costs
 - Cost of parallel infrastructure
 - Cost of moving legacy data

Conclusions:

- TCO is dependent on requirements, specifically:
 - Accumulated data vs time Large data volumes further in the future benefit from higher density disks
 - Read/write requirements Disk bandwidth naturally increases with storage capacity (more HDDs), tape bandwidth does not.
 - Continuous dialog with scientific experiments important to enable optimal and cost efficient use of mass storage resources

Conclusions:

- Predictions beyond 10 years are problematic due to technology and economic uncertainties
 - HDD ~2029 transition from HAMR to Bit Patterned Media (BPM)
 - Tape Read/write performance an issue.
 - LTO-9 12.5 hours to read full tape
 - Tape/HDD Economics of the business: Are they viable ?
 - Role of SSD in capacity storage is unclear.
 - Cost /TB for SSDs has been dropping but remains 5x-10x higher than HDD.

