

Science and Technology Facilities Council

CTA Deployment at RAL

George Patargias, Tom Byrne and Alison Packer 9th February, 2021

Outline

- Background (motivation, procurement exercise)
- Hardware (architecture, node set up)
- EOSCTA Progress
- Data transfer routes (CERN to RAL)
- Future plans

Motivation

- CASTOR has provided the tape archive service at RAL since 2006
- Designed and maintained by CERN
 who have now migrated to CTA
- RAL need to find a new solution or continue running CASTOR
- Opportunity to build a new service more aligned with STFC strategic objectives

STFC Tier-1/Facilities Castor Data Volumes

• Tier-1/Facilities tape holdings > 130PB

Growth rates: 0.8PB/month (Tier-1), 1.1PB/month (Facilities)

Tape Archive Solutions

With Castor EOL, RAL evaluated various options for replacement, including commercial products and CTA

Commercial - several areas which made this less attractive/feasible option at RAL:

- Funding models
- Vendor lock-in
- Integration effort with our existing software
- Timescales to migrate from Castor

CTA provides significant advantages over other solutions for RAL:

- Staff familiarity with many concepts from Castor and good collaboration with colleagues at CERN for many years
- Migration of data in situ
- Opportunity to move away from Oracle database software
- Opportunity to create a more unified service across STFC one instance for Tier-1
 and Facilities

From CASTOR to EOSCTA at RAL

TS1160 Tape

Drives

(x16)

ALC: USE OF

Facilities Council

Hardware

Node Type & Number	Function	Model	CPU	Memory	Disk	Network
EOS 12 x production 2 x test	Namespace management & disk cache	DELL R740XD	2 x Intel Xeon Gold 5218	192 GB	System + 1 NVMe + 16 x 2TB SSD	1 x Mellanox ConnectX-4 LX Dual Port 10/25GbE 1 x Intel Ethernet I350 Dual Port 1GbE BASE-T Adapter
Ceph 3 x production 2 x standby/dev	For transient data, queues and requests stored as objects in key- value store	DELL R6415	1 x AMD EPYC 7551	128GB	System + 8 x 4TB SSD	1 x Mellanox ConnectX-4 LX Dual Port 10/25GbE
Database 2 x Oracle RAC production 2 x Oracle RAC test	CTA catalogue	DELL PowerEdge R440	2 x Intel Xeon Gold 5222	192 GB	System + separate storage array (~90TB capacity)	1 x Broadcom 5720 Dual Port 1 GbE
						1 x Dual-Port 1GbE On- Board LOM
Tape Server	RAL intend to allocate 1 tape server per 2 tape drives (initially)	DELL PowerEdge R640	2 x Intel Xeon Silver 4214	96 GB	2 x 240GB SSD SATA	1 x Mellanox ConnectX-4 LX Dual Port 10/25GbE
Frontend Servers (virtual)	Accepts archive/retrieve requests from EOS and send to CTA object store.					
	Used for admin commands					

Tape Library Migration

- Support for Oracle tape ends mid-2020s
- Two Spectra TFinity libraries purchased in 2019 and 2020
- CTA is integrated with Spectra and IBM currently, but not Oracle
- Migrate 130PB of data from Oracle SL8500 to Spectra before CTA goes into prod
- Set up a separate Tier-1 Repack CASTOR instance
 - > Single generic CASTOR headnode (stager): 6 CPU cores and 32GB RAM
 - > Tape buffer: 9 x HDD and 4 x SSD disk servers \rightarrow 625TB
 - > Initial drive allocation: 10 x T10KD for reading (250MB/s) and 6 x TS1160 for writing (400MB/s)
 - > Final drive allocation: 14 x T10KD for reading and 8 x TS1160 for writing (accelerated rate)

Tape Library Migration

Reading rate from one T10KD drive (Oracle)

Writing rate to two TS1160 drives (Spectra)

Tier-1 Database Clean-up

- CASTOR was used to manage also disk-only data
- ATLAS Rucio naming convention creates a lot of directories
- Remove old disk-only directories no longer required
- Iterative procedure of directory & file search and deletion
- Result: smaller DB schemas to migrate to CTA
- Deleted entries per VO:

ATLAS: 20,133,182 CMS: 973,006 LHCb: 8,543,377

Science and Technology Facilities Council Total: 29,649,565

36% of the namespace size before deletion!

CTA design at RAL

КК

CTA Tape deployment

- CTA tape system resembles CASTOR from which it has evolved
 - ✓ Storage Class (CTA) ↔ File Class (CASTOR)
 - ✓ Archive Route (CTA) ↔ Migration Route (CASTOR)
 - ✓ Requester mount rule (CTA) ↔ Recall group (CASTOR)
 - ✓ Tape pools (CTA) ↔ Tape pools (CASTOR)
- A CTA tape server is (basically) a CASTOR tape server

CTA Database deployment

- During development we are using PostgreSQL for the CTA catalogue and mhVTL as the virtual tape library.
- When we migrate from Castor to CTA, we will use Oracle and follow the CERN migration path.
 - In the longer term we aim to migrate from Oracle to PostgreSQL
- CTA object store will be provisioned by Ceph, which we have substantial experience with

EOS-CTA deployment

- No prior experience in running EOS at RAL
 - Especially an all SSD EOS instance requiring different performance tunings
 - Work in progress to understand the set up of an EOS instance
- CERN advised us to set up a K8s EOS-CTA instance on a standalone VM
 - This was very educational
 - We also tried creating a Docker EOS instance
- Currently we have a cluster of cloud VMs running EOS MGM/FST/QuarkDB
- Delayed access to hardware due to Covid-19 disruption

Data transfer routes 1

Data transfer routes 2

Science and

Technology Facilities Council For RAW data export, probably best to transfer directly to RAL CTA. For other types of transfer, an FTS multi-hop via Echo may be better. We will need to test out both.

Migration Plan

THANK YOU!

