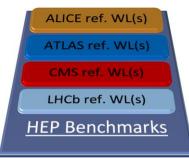
HEP Benchmarks and HEPSCORE Deployment Task Force

Michele Michelotto INFN Padova

Slides material thanks to Domenico Giordano (CERN/IT) and Miguel Medeiros (CERN/IT)

Pre-GDB "Worker Nodes" 13 July 2021

HEP


Intro

- This report focuses on the <u>HEP Benchmarks project</u>
 - Main activity of the WG in the last year
- In short

WLCG has to change the benchmark HS06 sooner or later

- Motivations extensively presented at the last <u>HEPiX Workshop '19</u>
- Briefly: HS06 end of technical support (2017), targets only CPUs, we don't know if will continue to scale well w.r.t. new HEP sw
- □ Field-specific (HEP) workloads guarantee by construction
 - A score with high correlation to the throughput of HEP workloads
 - A usage pattern that is similar to that of HEP workloads

https://gitla	b.cern.ch/hep-benchmarks		
	Scenarios	HS06	HEPscore
	x86 CPUs (y. 2010-2020)	\checkmark	\checkmark
	New CPUs models and/or arch	?	√
r later	New Exp Sw	?	√(w/ new reference WLs)
5,	CPU + GPU/FPGA/	×	√(same speed definition: event/s)

Current WLCG benchmark: HEP-SPEC06 (HS06)

□ Based on SPEC CPU2006

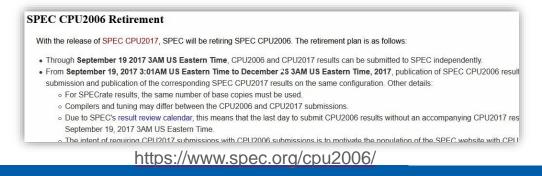
- Standard Performance Evaluation Corporation was founded in 1988

- SPEC CPU2006: Industry-standard, CPU-intensive, benchmark suite
- Current SPEC CPU subcommittee members include AMD, ARM, Dell, Fujitsu, HPE, IBM, Inspur,
 Intel, Nvidia and Oracle ^[*]

- HS06 is a subset of SPEC CPU[®] 2006 benchmark, tuned for HEP
 - 7 C++ benchmarks recompiled with gcc
 optimizer switches of LHC experiments' software
 - In 2009, proven high correlation with HEP workloads

Bmk	Int vs Float	Description
444.namd	CF	92224 atom simulation of apolipoprotein A-I
447.deallI	CF	Numerical Solution of Partial Differential Equations using the Adaptive Finite Element Method
450.soplex	CF	Solves a linear program using the Simplex algorithm
453.povray	CF	A ray-tracer. Ray-tracing is a rendering technique that calculates an image of a scene by simulating the way rays of light travel in the real world
471.omnetpp	CINT	Discrete event simulation of a large Ethernet network.
473.astar	CINT	Derived from a portable 2D path-finding library that is used in game's AI
483.xalancbmk	CINT	XSLT processor for transforming XML documents into HTML, text, or other XML document types

The 7 C++ HS06 benchmarks



Benchmarking: challenges

Concerns with HS06

- Becoming "old": the SPEC CPU 2006 is already retired.
- License is required by the Standard Performance Evaluation Corporation (SPEC).
- The CPU architecture landscape evolved greatly in the past 20 years.
 - 64-bit compilations, multi-thread/multi-process, vectorized instructions (AVX), etc.
- Reported deviations between HS06 score and actual system performance.
 - Not representative of full machine potential (and of improved experiment workloads).
- Does not work "out of the box" on heterogeneous environments.

Michele Michelotto INFN

pre-GDB Worker Nodes

Benchmarking: challenges

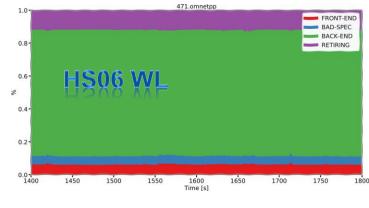
Heterogeneous environments:

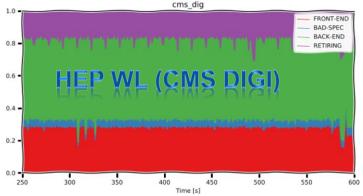
- Increasing GPU landscape
- ARM based architectures
- HPC sites, Commercial Clouds -
- Complex systems

- ✤ How we benchmark and procure these resources (with HS06)?
 - Can we rely on the result on this architecture? (HS06 not natively supported)
- Can we benchmark these resources without license constraint
 - Can we benchmark the full system (CPU + GPU?

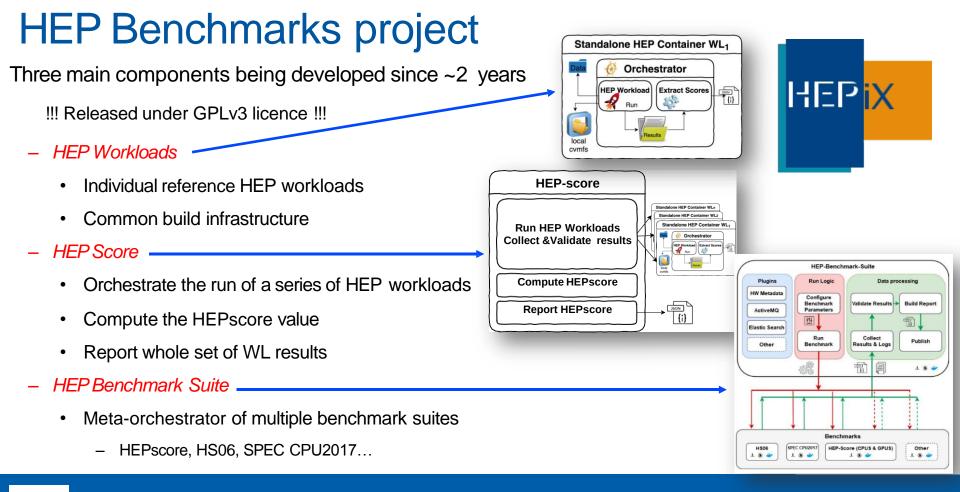
Scenarios	HS06
x86 CPUs (2010-2021)	\checkmark
New CPU models and/or architectures	?
New Experiment SW	?
CPU + GPU/FPGA/Other	X
License	Needed by SPEC

In short...


Quantitative comparison with WLCG workloads


- Unveil the dissimilarities between HEP workloads and the SPEC CPU benchmarks
 - Using the <u>Trident</u> toolkit
 - analysis of the hardware performance counters

Characterization of the resources utilised by a given workload


Percentage of time spent in

- **Front-End** fetch and decode program code
- Back-End monitor and execution of uOP
- Retiring Completion of the uOP
- Bad speculation uOPs that are cancelled before retirement due to branch misprediction

HEP Workloads

- Standalone containers encapsulating <u>all and only</u> the dependencies needed to run each workload as a benchmark
 - Gen, Sim, Digi, Reco workloads are available as container images
 - Report results in a structured json format with rich metadata set (see next slides)
- Standalone docker containers available in <u>gitlab registry</u> and
 - !!NEW!! distributed via CVMFS

/cvmfs/unpacked.cern.ch/gitlab-registry.cern.ch/hep-benchmarks/hep-workloads

- Run a given workload via a single command line:

>singularity run \$IMAGE_PATH <args>
>docker run \$IMAGE_PATH <args>

I	mage Repositories
	hep-benchmarks/hep-workloads/hep-workload-builder tੈ ⊇ 2 Tags
	hep-benchmarks/hep-workloads/atlas-sim-bmk 🛱 🖘 11 Tags
	hep-benchmarks/hep-workloads/hep-workload-builder/cach 107 Tags
	hep-benchmarks/hep-workloads/atlas-kv-bmk 🛱 🗈 3 Tags
	hep-benchmarks/hep-workloads/alice-gen-sim-bmk 🛱
	gitlab registry

Sector 2 12 Image repositories O Expiration policy will run in about 6 h

Container Registry

pre-GDB Worker Nodes

HEP Workloads: Status

- Included new CPU Experiments workloads
 - Bellell (done), Atlas sim MT (in progress)
 - To come: Dune, gravitational waves, WeNMR, ...
- First GPU workload containerized
 - SimpleTrack (LHC simulation)
 - Multi-GPU container workloads (Nvidia, AMD, Intel...)

D Plan:

- Include the Run-3 CPU workloads proposed in the WLCG HEP Score Task Force
 - Support multiple architectures (e.g. ARM) as long as Experiments' software has been ported
- Integrate other GPU workloads: next CMS Patatrack (HLT Track reco), MC Madgraph

	-	-
1	IN	FN
-	-	

Summary of currently	supported	I HEP workloads
----------------------	-----------	-----------------

Experiment	Name	Description	Experiment license	Latest Container	Readiness	Pipeline status
Alice	gen-sim	link	GNU GPL v3	docker	w.i.p.	pipeline passed
Atlas	gen	link	Apache v2	docker	Y	pipeline passed
Atlas	sim	link	Apache v2	docker	Y	pipeline passed
Atlas	digi-reco	link	Apache v2	docker	w.i.p.	pipeline passed
CMS	gen-sim	link	Apache v2	docker	Y	pipeline passed
CMS	digi	link	Apache v2	docker	Y	pipeline passed
CMS	reco	link	Apache v2	docker	Y	pipeline passed
LHCb	gen-sim	link	GNU GPL v3	docker	Y	pipeline passed
Belle2	gen-sim- reco	link	GNU GPL v3	docker	Y	pipeline passed

https://gitlab.cern.ch/hep-benchmarks/hep-workloads

HEP Score v1.2 : The software framework

- ❑ Several new features included in this new release
 - Singularity and Docker engines are both supported, forced user namespace too
 - Access of cvmfs unpacked images
 - Better handling of disk space, configurable cleanup of the working directory
 - Optimised the report structure, allows retries in case of run failures
 - Improved CI tests
 - Configurable weighted geometric mean for the HEP workloads
 - Python wheels available: useful for installations in sites with limited external connectivity
- □ Toinstall & Run: documentation at https://gitlab.cern.ch/hep-benchmarks/hep-score
- □ Main developers: C. Hollowell, C. van der Laan, D. Southwick

HEPscore20POC:

- □ HEP Score tool is configurable
 - Config: list of workloads to run, reference scores & weights, settings
- HEP Score pkg distributed with a default config file:
 - $\Box \quad POC \rightarrow Proof of concept$
 - □ Includes the most stable workload tested on CPU up to 256 core
- □ We use this to make comparison with other benchmark or with the individual workloads
- □ Other config files can be used and passed to the tool
 - Convenient to include new workloads and perform studies
 - Each config is associated to a unique ID in the final report
- □ The official config will be defined by the WLCG HEP Score Task Force
 - After inclusion of Run3 workloads and performance study

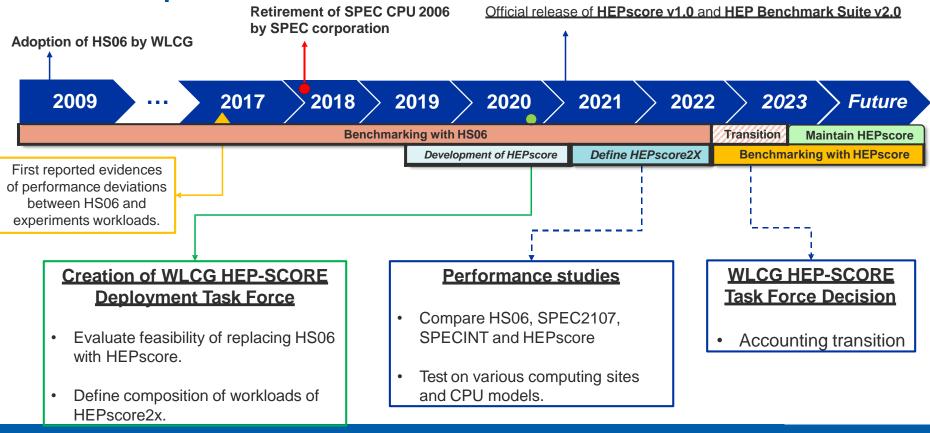
🖻 he	epscore2X_0.8.yaml (1.45 KB
1	hepscore_benchmark:
2	benchmarks:
3	atlas-gen-bmk:
4	results_file: atlas-gen_summary.json
5	ref_scores:
6	gen: 384
7	weight: 1.0
8	version: v2.1
9	args:
10	threads: 1 events: 200
12	belle2-gen-sim-reco-bmk:
13	results_file: belle2-gen-sim-reco_summary.json
14	ref_scores:
15	gen-sim-reco: 5.44
16	weight: 1.0
17	version: v2.2
18	args:
19	threads: 1
20 21	events: 50
21	cms-gen-sim-bmk: results_tile: cms-gen-sim_summary.json
23	ref_scores:
24	gen-sin: 0.726
25	weight: 1.0
26	version: v2.1
27	args:
28	threads: 4
29	events: 20
30 31	<pre>cms-digi-bmk: results_file: cms-digi_summary.json</pre>
32	ref_scores:
33	digi: 3.58
34	weight: 1.0
35	version: v2.1
36	args:
37	threads: 4
38	events: 50 [cms-reco-bmk:
39 40	results_file: cms-reco_sunmary.json
41	ref_scores:
42	reco: 2.196
43	weight: 1.0
44	version: v2.1
45	args:
46	threads: 4
47	events: 50
48	lhcb-gen-sim-bmk:
49 50	results_file: lhcb-gen-sim_summary.json
50	ref_scores: gen-sim: 90.29
52	weight: 1.0
53	version: v2.1
54	args:
55	threads: 1
56	events: 5
57	settings:
58	name: HEPscore2X
59	reference_machine: "CPU Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz"
60	registry: docker://gitlab-registry.cern.ch/hep-benchmarks/hep-workloads
61 62	method: geometric_mean repetitions: 3
63	representations: 3
64	scaling: 355
65	container_exec: singularity

D homeogra2V 0.8 yaml @ 145

HEPscore2X

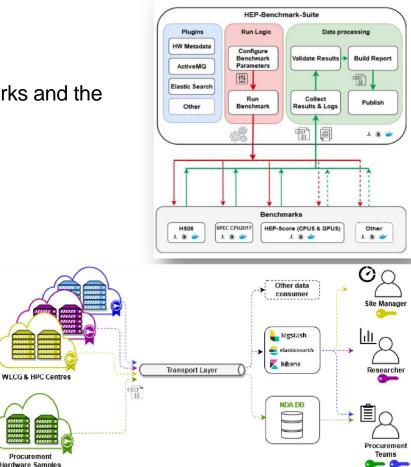
- The "X" will mark the year of its release.
- A given configuration has the workloads "frozen" in time.
- A WLCG Task Force was constituted.
 - Perform benchmark studies.
 - Study the mix of workloads that will constitute the metric.
- Goal is to ensure a smooth transition from HS06 to HEPscore2X
 - From operators to accounting teams.

WLCG HEP-SCORE Deployment Task Force

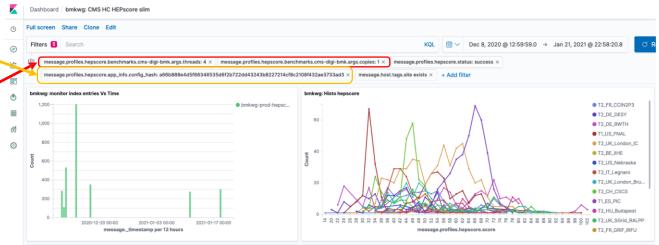

Helge Meinhard / CERN-IT 04 November 2020

https://indico.cern.ch/event/969947/

Scenarios	HS06	HEPscore
x86 CPUs (2010-2020)	\checkmark	\checkmark
New CPU models and/or architectures	?	\checkmark
New Experiment SW	?	✓ (with new reference WLs)
CPU + GPU/FPGA/Other	2	(✓) (same speed definition: events/s)
License	Needed by SPEC	GPLv3

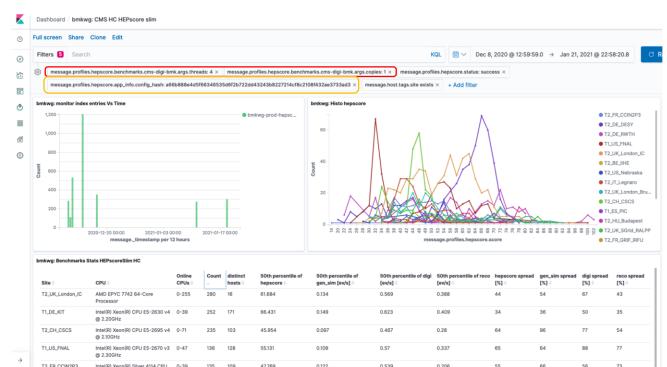

Next steps

HEP Benchmark Suite v2.1


- Meta-orchestrator for the execution of several benchmarks and the publication of the suite's report
 - HS06, HEP Score, SPEC CPU 2017, ...
- Features of this new version (2.0 and following)
 - Modular design, fully rewritten in python3.6+
 - Distributed via pip install, python wheels available
 - Metadata section with detailed HW information
 - Install as unprivileged user
 - HPC compatible: example of SLURM submission
 - Run also on Grid pilot jobs: see next slide
- □ Main developers: M. Fontes Medeiros, D. Southwick

HEPscore "slim" config on grid sites

- A "slim" version of the HEPscore2X config, including only CMS gen-sim, digi, reco
- Running on 4-cores job slots
- User job submission, glide-in singularity pilot runs
 - Requires singularity-in-singularity
 (i.e. user namespaces) enabled on the grid site
- Results collected in central DB (Elasticserach) and monitored via Kibana dashboards


mkwa:	Benchmarks	Stats	HEPscoreSlim HC

Site 🗘	CPU 🌣	Online CPUs 0	Count	distinct hosts 0	50th percentile of hepscore ©	50th percentile of gen_sim [ev/s] 0	50th percentile of digi [ev/s] 0	50th percentile of reco [ev/s] 0	hepscore spread [%]	gen_sim spread [%] ≎	digi spread [%] 0	reco spread [%] 0
T2_UK_London_IC	AMD EPYC 7742 64-Core Processor	0-255	280	16	61.684	0.134	0.569	0.388	44	54	67	43
T1_DE_KIT	Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz	0-39	252	171	66.431	0.149	0.623	0.409	34	36	50	35
T2_CH_CSCS	Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz	0-71	235	103	45.954	0.097	0.467	0.28	64	96	77	54
T1_US_FNAL	Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz	0-47	136	128	55.131	0.109	0.57	0.337	65	64	88	77
T2 FR CCIN2P3	Intel(R) Xeon(R) Silver 4114 CPU	0-39	135	109	47769	0 122	0.539	0.206	55	66	56	73

HEPscore "slim" config on grid sites

- We can use a "fast" version of HEPscore to benchmark the Worker Nodes
- Atlas have done something similar but we don't have access to their results at the moment

16

HS06 and SPEC CPU 2017

- □ Make sure that HS06 and SPEC CPU 2017 can run via the Suite
 - Orchestrator scripts and libraries available in a container image, built at https://gitlab.cern.ch/hep-benchmarks/hep-spec/
- □ HS06
 - Config is linux_gcc_cern.cfg used by HS06 in the last decade, with few adaptations
- □ SPEC CPU 2017
 - Default "HEP" benchmark set to mimic HS06: <u>Cpp-rate</u> set of benchmarks
 - Benchmark set can be reconfigured. Eg. -b intrate will run SPEC INT 2017 rate
 - NB: All configuration changes are tracked in the reported results
 - Config similar to linux gcc cern.cfg, distinct for x86 and ARM

Credits

- Collective effort of several member of the HEPiX Benchmarking WG
- Weekly meeting of the HEPiX Working Group or Jira Sprint Meeting
- CHEP21 abstract
 - Plenary talk
 - to be pubblished on
 Computing and Software for
 Big Science (Springer)

HEPiX benchmarking solution for WLCG computing resources

Miguel F. Medeiros^{1,*}, Manfred Alef², Luca Atzori¹, Jean-Michel Barbet³, Ingvild Brevik Høgstøyl⁴, Olga Datskova¹, Riccardo De Maria¹, Domenico Giordano¹, Maria Girone¹, Christopher Hollowell⁵, Michele Michelotto⁶, Andrea Sciabà¹, Tristan Sullivan⁷, Randal Sobie⁷, David Southwick^{1,8}, and Andrea Valassi¹ from HEPiX Benchmarking Working Group

¹CERN, Geneva, Switzerland
 ²KIT, Karlsruhe, Germany
 ³Laboratoire SUBATECH, CNRS-IN2P3, Nantes, France
 ⁴Norwegian University of Science and Technology, Norway
 ⁵Brookhaven National Laboratory, USA
 ⁶INFN, Istituto Nazionale di Fisica Nucleare, Padova, Italy
 ⁷University of Victoria, Canada
 ⁸University of Iowa, USA

Abstract. The HEPiX Benchmarking Working Group has been developing a

Conclusions

- □ HEP Benchmark Suite and HEP Score are ready to be tested by our community
- □ New HEP Workloads (mainly LHC Run3) will be made available during 2021
- □ Need volunteer sites to run the Suite and benchmark several CPU models
 - This will permit the studies recommended by the WLCG HEP Score Task Force
- □ Feedback and support questions are welcome in the HEP Benchmarks Project Discourse Forum

19

Backup Slides

21

HS06 for ARM CPUs

- Enable support for ARM
 - Multi-architecture container

We do not appear to have working vendor-supplied binaries for your architecture. You will have to compile the tool binaries by yourself. Please read the file SPEC_CPU2006_v1.2/Docs/tools-build.html

for instructions on how you might be able to build them. Please only attempt this as a last resort.

- gitlab-registry.cern.ch/hep-benchmarks/hep-spec/hepspec-cc7-multiarch:v2.0
- SPEC CPU 2017 already supports ARM cpus. Only CPU model needs to be changed when running on ARM
- HS06 too old to support natively ARM cpus: SPEC 2006 tooklit needed to be built to work
 - Build the toolkit following instructions https://www.spec.org/cpu2006/Docs/tools-build.html
 after patching some old code
 - Patch procedure available https://gitlab.cern.ch/hep-benchmarks/hep-spec/-/tree/master/patch_SPEC2006
- □ NB: patching the toolkit is one time operation
 - The toolkit is then included in the *tool/bin* area
 Re-creating an archive for SPEC CPU 2006 allows to use it in any other aarch64 machine

□ NB: HS06 for ARM only supported at 64 bits

Running HS06 on ARM

AWS Graviton2 bare-metal server benchmarked using the

hepspec multi-architecture container (see previous slide)

<pre>\$ echo \${SECRET_URL} /hep-spec/scripts/hep-spec.sh -w \$BMK_RUNDIR -b \$BMK -m \$BMK_OPTION -p \${SPEC_DIR} -u -</pre>

CERN HEPSPEC
Sat Feb 27 17:16:00 UTC 2021

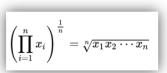
2021-02-27T17:16:00 [/hep-spec/scripts/hep-spec.sh] Variable values:
HEPSPEC_SOURCEDIR=/hep-spec/scripts
HEPSPEC BMK=hs06
HEPSPEC_NUMPROC=64
<u>HEPSPEC_PATH=/scratch</u> /HEPSPEC/CI_hs06_ext_g2_bare_12384842
(HEPSPEC_SET=all_cpp)
HEPSPEC_MACHINE_OPTION=default
HEPSPEC_ITERATIONS=3
HEP5PEC_WORKDIR=/scratch/jobs/hs06_ext_g2_bare_12384842/hep-spec
HEPSPEC_DEBUG=0

\$ lscpu	
Architecture:	aarch64
CPU op-mode(s):	32-bit, 64-bit
Byte Order:	Little Endian
CPU(s):	64
On-line CPU(s) list:	0-63
Thread(s) per core:	1
Core(s) per socket:	64
Socket(s):	1
NUMA node(s):	1
Vendor ID:	ARM
Model:	1
Model name:	Neoverse-N1
Stepping:	r3p1
BogoMIPS:	243.75
L1d cache:	4 MiB
L1i cache:	4 MiB
L2 cache:	64 MiB
L3 cache:	32 MiB
NUMA node0 CPU(s):	0-63

{"hs06":{"start":"Sat Feb 27 17:19:26 UTC 2021", "end":"Sat Feb 27 20:10:46 UTC 2021", "copies":64,

"runcpu_args":"1 runspec: runspec --define machine_option:64 --config=linux_gcc_cern.cfg --action=build all_cpp;64 runs pec: runspec --define machine_option:64 --config=linux_gcc_cern.cfg --nobuild --noreportable --iterations=3 all_cpp;", "bset":"all _cpp", "LINK":" 6 g++ -02 -fPIC -pthread -DSPEC_CPU_LP64 <objects> -o options; 1 g++ -02 -fPIC -pthread -DSPEC_CPU_LP 64 -DSPEC_CPU_LINUX <objects> -o options;", "hash":"7b84bb375cee11731a958a26d6fc155d",

"score":1170.998,) "avg_core_score" : 18.296, "num_bmks":7 ,"bmks":{ "444.namd":[23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 2



Benchmark comparing "speed factors"

- □ In order to compare servers HS06 and HEP-Score implement the geometric mean approach. Needs:
 - a set of reference workloads (WLs)
 - a measure of performance per WL (m_i), that typically goes as [1/s] (eg. can be the event throughput)
 - a reference machine
- The score S of a server (srv) is defined as the geometric mean of the speed factors $x_i(srv, ref) = m_i(srv)/m_i(ref)$ respect to the reference machine (ref)
 - i.e. "speed" is normalised respect to the reference machine "speed"
- The relative score between srv_A and srv_B is the ratio of the scores S(srv, ref), this is still a geometric mean of speed factors

	WL ₁		WL ₂		WL _n		Score	S(A,B)	
Ref. Srv	m₁(ref)	1 (by def)	m ₂ (ref)	1 (by def)	m _n (ref)	1 (by def)	$\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$		
Srv A	m1(A)	x ₁ (A,ref)	m ₂ (A)	x ₂ (A,ref)	m _n (A)	x _n (A,ref)	S(A,ref)	!(#,%&')	
Srv B	m₁(B)	X ₁ (B,ref)	m ₂ (B)	x ₂ (B,ref)	m _n (B)	x _n (B,ref)	S(B,ref)	!(),%&')	
"File:201912 Rack-optimised servers.svg" by DataBase Center for Life Science (DBCLS) is licensed under CC BY 4.0									

https://en.wikipedia.org/wiki/Geometric mean