

Tokens in dCache

Paul Millar

IAM Workshop 2021

2021-11-08

https://indico.cern.ch/event/876810/

How login works in dCache

Credentials vs principals

Name: Wile E. Coyote

ACME customer ID: 11493

Passport number: 0008103314

Bank account number: 001213921

Banks with: **United ACME Bank**

Member-of: **Antagonists Anonymous**

Principals

Credentials

The door and gPlazma

What happens in AuthN phase

- Is the credential valid?
- Pull out information (principals)
 that describe the person:
 - Token ID: T22000129
 - Name: ERIKA MUSTERMANN
 - Nationality: German

It's all done with plugins!

dCache and tokens

Protocols supporting bearer tokens

- Underlying network protocol needs to (somehow) support bearer tokens:
 - Supporting bearer tokens: HTTP, xroot.
 - Not supporting bearer tokens: NFS, FTP.
- dCache doors supporting oidc tokens:
 - Using HTTP: WebDAV, SRM, REST.
 - Using xroot: "xrootd".

gPlazma support for tokens

- Support is available in the AuthN phase:
 - AuthN phase: Credential → Principals.
 - Subsequent phases use this information.
- There are two AuthN phase plugins to support tokens:
 - oidc identify a person: authentication
 - scitoken identify what bearer is allowed to do: authorisation.
- Either, neither or both tokens may be enabled.
- Compatible with other AuthN (e.g., X.509).

gPlazma support: oidc plugin

- Calls user-info endpoint to validate token and discover "claims".
- The OP's identity → OauthProviderPrincipal.
- Maps claims to principals:
 - sub → OidcSubjectPrincipal
 - groups → OpenIdGroupPrincipal (or GroupNamePrincipal)
 - eduperson_assurance → LoAPrincipal
 - given_name/family_name/name → FullNamePrincipal
 - email → EmailAddressPrincipal
 - wlcg.groups → OpenIdGroupPrincipal
 - eduperson_entitlement → EntitlementPrincipal
 - Optionally preferred_username → UserNamePrincipal

gPlazma support: scitoken plugin

- Token must be a JWT; uses offline verification.
- Requires token to have either sub or jti (or both) claims.
- Optional audience protection: based on the aud claim.
- Optional replay-attack protection, using jti.
- The OP's identity → OauthProviderPrincipal
- Maps claims to principals:
 - sub → OidcSubjectPrincipal
 - jti → JwtJtiPrincipal
 - scope → authorisation information (newer versions override namespace).
- Additional fixed set of principals for this OP (e.g., GroupNamePrincipal from VO).

Clients: WebDAV with OIDC tokens

Our "go to" client here is rclone:

- Supports OIDC via oidc-agent.
- Primarily a
 command-line client,
 but does provide a
 web-based GUI.

Clients: dCacheView

JavaScript client shipped with dCache that supports

OIDC.

Uses REST API+ WebDAV

 Storage events provide a "live" view of directories.

Future directions

Merging scitoken and oidc plugins

- Not much sense in having two plugins that do (more or less) the same thing.
- Plan to update the oidc plugin to support:
 - JWT offline verification;
 - Features of scitoken plugin:
 - authorisation (scitoken and WLCG-AuthZ profiles); audience protection; replay-attack protection.
- Support OP-based identity via the OauthProviderPrincipal.

Improved support for Level-of-Assurance

- The x509 and oidc plugins provide LoA information.
- Currently no dCache-supplied plugins make use of this information.
- In a federated environment, not all authentication mechanisms are the same.
- Use-case: single service hosting resources that require additional "hoops".
- Investigate a "policy" plugin to support enforcing LoA requirements.
- Potential involvement of TFA/MFA?

Supporting federated environments

- The HIFIS storage use-case:
 - Normal activity are through a DESY infrastructure proxy (keycloak)
 provides a common service for all on-site services.
 - Also participating as a service in a federated environment: FTS.
- Transfers from FTS use a token from a community proxy (!= DESY's keycloak), but identities are held in the infra proxy.
- Use token-translation to convert community-poxy-issued token to a keycloak-issue-token token.

Open questions

Open-question: choosing primary group?

- VOMS (perhaps uniquely) allows a user to choose which group is primary.
- In dCache, the primary group is **significant**:
 - Files and directories are group-owned by the primary group.
 - Quota is consumed by primary group.
 - Space consumption uses primary group (sort of).
 - Pins are group-owned based on primary group.
- IAM (like many other OPs) currently don't support a user choosing which group is their primary group: does this matter?

Open-question: decommissioning accounts?

- Accounts may be auto-created:
 - Architecturally, dCache can do this; but we recommend using an infrastructure proxy.
- How does a service learn of decommissioned accounts?
 - IAM would first need to discover this.
 - IAM would need to propagate this to dCache.
- Is this problem of interest to IAM?
- Helmholtz is developing an ad-hoc solution a possibility for standardisation?

The conclusions

(the TL&FA)

Summary

- dCache supports tokens:
 - Both for authentication (OIDC) and authorisation (scitoken/AuthZ) use-cases.
 - It works, but looking at improving it.
 - Also planning to add new features.
- We're also interested in hearing which features people would find useful.

Thanks for listening