
Tokens in dCache
Paul Millar

IAM Workshop 2021
2021-11-08

https://indico.cern.ch/event/876810/

How login works in dCache

Credentials vs principals

Credentials Principals

Name: Wile E. Coyote

ACME customer ID: 11493

Member-of: Antagonists Anonymous

Passport number: 0008103314

Bank account number: 001213921
Banks with: United ACME Bank

`

The door and gPlazma

What happens in AuthN phase

● Is the credential valid?
● Pull out information (principals)

that describe the person:
● Token ID: T22000129
● Name: ERIKA MUSTERMANN
● Nationality: German

It’s all done with plugins!

dCache and tokens

Protocols supporting bearer tokens
● Underlying network protocol needs to (somehow) support bearer

tokens:
● Supporting bearer tokens: HTTP, xroot.
● Not supporting bearer tokens: NFS, FTP.

● dCache doors supporting oidc tokens:
● Using HTTP: WebDAV, SRM, REST.
● Using xroot: “xrootd”.

gPlazma support for tokens
● Support is available in the AuthN phase:

● AuthN phase: Credential → Principals.
● Subsequent phases use this information.

● There are two AuthN phase plugins to support tokens:
● oidc – identify a person: authentication
● scitoken – identify what bearer is allowed to do: authorisation.

● Either, neither or both tokens may be enabled.
● Compatible with other AuthN (e.g., X.509).

gPlazma support: oidc plugin
● Calls user-info endpoint to validate token and discover “claims”.
● The OP’s identity → OauthProviderPrincipal.
● Maps claims to principals:

● sub → OidcSubjectPrincipal
● groups → OpenIdGroupPrincipal (or GroupNamePrincipal)
● eduperson_assurance → LoAPrincipal
● given_name/family_name/name → FullNamePrincipal
● email → EmailAddressPrincipal
● wlcg.groups → OpenIdGroupPrincipal
● eduperson_entitlement → EntitlementPrincipal
● Optionally preferred_username → UserNamePrincipal

gPlazma support: scitoken plugin
● Token must be a JWT; uses offline verification.
● Requires token to have either sub or jti (or both) claims.
● Optional audience protection: based on the aud claim.
● Optional replay-attack protection, using jti.
● The OP’s identity → OauthProviderPrincipal
● Maps claims to principals:

● sub → OidcSubjectPrincipal
● jti → JwtJtiPrincipal
● scope → authorisation information (newer versions override namespace).

● Additional fixed set of principals for this OP (e.g., GroupNamePrincipal from VO).

Clients: WebDAV with OIDC tokens
● Our “go to” client here is rclone:

● Supports OIDC via
oidc-agent.

● Primarily a
command-line client,
but does provide a
web-based GUI.

Clients: dCacheView
● JavaScript client shipped with dCache that supports

OIDC.
● Uses REST API

+ WebDAV
● Storage events

provide a “live”
view of
directories.

Future directions

`

Merging scitoken and oidc plugins
● Not much sense in having two plugins that do (more or

less) the same thing.
● Plan to update the oidc plugin to support:

● JWT offline verification;
● Features of scitoken plugin:

authorisation (scitoken and WLCG-AuthZ profiles); audience
protection; replay-attack protection.

● Support OP-based identity via the OauthProviderPrincipal.

Improved support for Level-of-Assurance
● The x509 and oidc plugins provide LoA information.
● Currently no dCache-supplied plugins make use of this information.
● In a federated environment, not all authentication mechanisms are

the same.
● Use-case: single service hosting resources that require additional

“hoops”.
● Investigate a “policy” plugin to support enforcing LoA requirements.
● Potential involvement of TFA/MFA ?

Supporting federated environments
● The HIFIS storage use-case:

● Normal activity are through a DESY infrastructure proxy (keycloak)
– provides a common service for all on-site services.

● Also participating as a service in a federated environment: FTS.
● Transfers from FTS use a token from a community proxy (!=

DESY’s keycloak), but identities are held in the infra proxy.
● Use token-translation to convert community-poxy-issued

token to a keycloak-issue-token token.

Open questions

Open-question: choosing primary group?
● VOMS (perhaps uniquely) allows a user to choose which group is

primary.
● In dCache, the primary group is significant:

● Files and directories are group-owned by the primary group.
● Quota is consumed by primary group.
● Space consumption uses primary group (sort of).
● Pins are group-owned based on primary group.

● IAM (like many other OPs) currently don’t support a user choosing
which group is their primary group: does this matter?

Open-question: decommissioning accounts?
● Accounts may be auto-created:

● Architecturally, dCache can do this; but we recommend using an
infrastructure proxy.

● How does a service learn of decommissioned accounts?
● IAM would first need to discover this.
● IAM would need to propagate this to dCache.

● Is this problem of interest to IAM?
● Helmholtz is developing an ad-hoc solution – a possibility for

standardisation?

The conclusions

(the TL&FA)

Summary
● dCache supports tokens:

● Both for authentication (OIDC) and authorisation
(scitoken/AuthZ) use-cases.

● It works, but looking at improving it.
● Also planning to add new features.

● We’re also interested in hearing which features people
would find useful.

Thanks for listening

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

