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Possible Applications

Laser surface treatment:

- Low secondary electron yield (<1) of metals and ceramics for electron cloud
mitigation

- surface cleaning and coating removal

- artificial patterning of surfaces

Advantages compared to thin film technology:

- selective and precise treatment of accelerator
components in air or inert gas
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FIG. 4. SEY for 316L stainless steel as a function of incident electron
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LESS studies

= Before Cleaning
« After Cleaning
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Ablation depth, trench distance
and SEY can be tuned via laser
parameter adjustment
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Influence of ambient gas during laser treatment
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» treatment in air results in strong surface oxidation
(including charge up at cryogenic temperatures)

PP :
Inert gas box for laser treatment —> all setups are designed to blow N, blowing into the
reaction zone

> all test samples are made on planar scanning stage
and optimized laser focus




Impedance aspects of formed trenches
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FIG. 5. (a) Surface resistance as a function of the sample temperature for pristine copper and for the different surface treatments.
(b) Surface resistance averaged over the temperature as a function of the QPR mode frequency for pristine copper and for the different
surface treatments. The curves show the functional dependence f%/3, having the data points at 400 MHz as a reference. Error bars are not
shown for a better visualization of the different data points (measurement uncertainty 6R;/R, ~ 10%).

S. Calatroni et al. Phys. Rev. Accel. Beams 22, 063101 (2019)




C-magnet
vacuum chamber

E-cloud monitoring in SPS

e-cloud strip
detector

Laser surface treatment
(top and bottom faces)

a-C coating and LESS of Copper enable
electron cloud suppression

Perforated Cu liner, 7%
geometric transparency
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FIG. 12. Integrated signals from the ECMs during the total duration of the experiment in the SPS. (top) Reference copper liner;
(bottom) liners with e-cloud mitigation: blue squares—treated by ASTeC, brown triangles—treated at the University of Dundee and
green lozenges—a-C coating. Note the difference in vertical scales.

FIG. 13. Progressive e-cloud development in the four batches of 72 proton bunches. Clockwise from top left: liner treated at the
University of Dundee, liner treated by ASTeC, a-C coated liner and Cu liner. Note the difference in vertical scale for the latter.

S. Calatroni Phys. Rev. Accel. Beams 20, 113201 (2017)




Potential applications

> Low SEY treatment of metals and ceramics

> EXx-situ beam screen treatment, baseline for FCC

» Surface blackening to reduce light reflection, e.g. for Hollow
Electron Lens (HEL)

» Deoxidation of beam screens of high heat-load sectors (CuO)




Internal treatment of beam screens

Universit
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» (In-situ) treatment of Triplet Beam screens
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Experimental setup for laser treatment
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Internal treatment of beam screens

University
of Dundee




SEY Analysis of laser-treated beam screen
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SEY Analysis of laser-treated beam screen

timeline of treatment including, focus & parameter optimization
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LESS beam screen characteristics

LESS beam screen
1.3 1 LESS flat sample

© = =
(o] o [l
[ T T

secondary electron yield max.
o
o
1 L

| Conditioning of laser-
| treated beam screen surface  *T—3—3— 5

©
~l

o
o)

bR | T TorTTTThT LI | TorTTTThT TorTrTTT rrTTTTT
107 10° 10° 10* 103 10 10*
electron dose (C/mm?)

» homogeneous stripe pattern achieved > SEY higher compared to lab LESS samples

» ablation depth too high (< 25 um)

—> promising to find optimized conditions in
terms of treatment speed, ablation depth
and final SEY after conditioning




Particle Generation and Dust in Beam Screen
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Particle Generation and Dust in Beam Screen
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Extracted particles

Particles mass (mQ) Origin
12.0 external particles
7.4 ultrasonic cleaning of polymer bag
14.6 rinsing of beam screen

Extraction of loose particles has
to be improved for treatment of
long, confined spaces such as
beam screens or tubes.




Challenges for the development of
reliable beam screen treatments
(towards In-situ processes)

Requirement: robust and stable light delivery to the robot and the
beam screen surface

» Extraction of loose particles & cleaning processes are essential

» |s green laser best solution — IR-technology (1064 nm) possible?




Installation of laser test bench in SMA 18

01-02/2020 installation of laser & robot

01-06/2020 control software development

» The current setup needs further technical development and the robot
IS currently only capable to operate in triplet beam screens.

» Modifications to treat circular cross-sections at different focal lengths
or complex shapes are envisaged, but not yet available.




Laser parameter screening with QM ..
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Laser parameter screening — wavelength
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Laser parameter screening — energy density
treatment speed T |%M

power, wavelength, pulse duration,
pulse frequency, scan velocity,
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» LESS processing is possible from UV to IR !

532 nm is more sensitive and technologically challenging




Laser parameter screening — ablation depth
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In the laboratory, it is possible to minimize the
ablation depth while still obtaining SEY ~1

- Upscaling and large-area processing to be
evaluated




Evaluation of quench-induced particle release
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CERN laser treatment development project

Laser

treatment @
CERN

test bench 15 m scalability -

In-situ LHC beam screen treatment







Laser parameter screening — wavelength
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Cross section of laser treated surfaces

max. ablation depth
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FIG.2. The four characterized sample surfaces. Cu_A or Cu_B,
pristine OFE copper; LESS1, copper with a radial laser pattern;
LESS2, copper with a circular laser pattern; a-C coating, copper
with an amorphous carbon coating.
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FIG. 5. (a) Surface resistance as a function of the sample temperature for pristine copper and for the different surface treatments. FIG: 4 ehematls pattem: Bor il las.er Srdimicniof the; QFE
(b) Surface resistance averaged over the temperature as a function of the QPR mode frequency for pristine copper and for the different il EEDS e peiedh ANy T ShiseeAy S
surface treatments. The curves show the functional dependence £2/3, having the data points at 400 MHz as a reference. Error bars are not

shown for a better visualization of the different data points (measurement uncertainty 6R;/R ~ 10%).

S. Calatroni et al. Phys. Rev. Accel. Beams 22, 063101 (2019)




Quadrupole resonator at 400 MHz: QO vs Temperature MHz
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Status of Cu laser treatment 89 of Dundes @
development

Science & Technology
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d COLDEX treatment

9 segments x 24 cm




Possible issue: loose particles

Loose particles detached by
rinsing and agitation
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Evaluation of quench-induced particle release
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Mechanical stress on the particles Centrifugation: apply centrifugal force
during magnetic quench on the treated surface
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