LHC Physics Centre at CERN - Student lectures April 7th and 9th, 2010 CERN, Geneva, Switzerland

The operation of the LHC accelerator complex Part 1

Stefano Redaelli CERN Beams Department Operations Group

30-Mar-2010 20:14:20 Fill #: 1005 Energy: 297.4 GeV I(B1): 1.55e+08 I(B2): 7.06e+07

S. Redaelli, LPCC lectures, 07/09-04-2010

What do experiments want?

= bending radius p = momentume = charge

Determined by the maximum field of bending dipoles, B Depends on machine parameters: charge per bunch (N), num. of bunches (n_b) and transverse beam sizes ()

"Thus, to achieve high luminosity, all one has to do is make (lots of) high population bunches of low emittance to collide at high frequency at locations where the beam optics provides as low values of the amplitude functions as possible." PDG 2005, chapter 25

LHC design parameters

Nominal LHC parameters	
Beam injection energy (TeV)	0.45
Beam energy (TeV)	7.0
Number of particles per bunch	1.15 x 10 ¹¹
Number of bunches per beam	2808
Max stored beam energy (MJ)	362
Norm transverse emittance (µm rad)	3.75
Colliding beam size (µm)	16
Bunch length at 7 TeV (cm)	7.55

- How do we produce ~3000 proton bunches of 450 GeV?
 - How do we accelerate them to higher energies?
 - How do we make small beams?
- What are the implication of these parameters on OP/layout?
- How do we operate the whole LHC complex? With which tools?
 - How do we talk to the experiments?

- Introduction
- Recap. of accelerator physics
 - Basic equations
 - Measurements → tools
- LHC injector complex
 - Source and Linac2
 - PS Booster
 - Proton synchrotron
 - Super Proton Synchrotron
- LHC parameters and layout
 - Arc and straight sections
 - Machine protection system

Outline - 2st lecture

- Parameters for 2010-11
- LHC operational phases
 - The LHC cycle
 - Commissioning: baseline / status
- Operational tools
 - Page 1's / Fixed displays
 - More applications
- One shift of LHC operation
 - How do we operate the LHC

- Introduction
- Recap. of accelerator physics
 - Basic equations
 - Measurements → tools
- LHC injector complex
 - Source and Linac2
 - PS Booster
 - Proton synchrotron
 - Super Proton Synchrotron
- LHC parameters and layout
 - Arc and straight sections
 - Machine protection system

.

-

Basic concepts

S. Redaelli, LPCC lectures, 07/09-04-2010

Fixes the relation between magnetic field and particle s energy Force

mv

ρ

two rings collision regions

Two-in-one magnet design

force

B_field

LHC: $B = 8.33 T \Rightarrow E = 7 TeV$

B

S. Redaelli, LPCC lectures, 07/09-04-2010

Transverse focusing is achieved with **quadrupole magnets**, which act on the beam like an optical lens.

Linear increase of the magnetic field along the axes (no effect on particles on axis).

Focusing in one plane, **de-focusing** in the other!

Alternating gradient lattice

One can find an arrangement of quadrupole magnets that provides net focusing in both planes ("strong focusing").

Dipole magnets keep the particles on the circular orbit.

Quadrupole magnets focus alternatively in both planes.

Transverse equation of motion

 $\begin{array}{ll} \text{Magnetic field [T]:} & B_y = \frac{\partial B_y}{\partial x} \times x \\ \text{Field gradient [T m^{-1}]:} & g = \frac{\partial B_y}{\partial x} \\ \text{Normalized grad. [m^{-2}]:} & K = \frac{g}{p_0/e} = \frac{1}{f} \end{array}$

$$x'' + K(s)x = 0$$

Hill's equation

K(s) describes the distribution of focusing strength along the lattice.

Alternating Gradient focusing \rightarrow pseudo-harmonic oscillator with *s*-dependent spring constant *K*(*s*).

The general linear magnet lattice can be parameterized by a 'varying spring constant', *K*=*K*(*s*)

Note that dipoles give a "weak focusing" term in the horizontal plane, K(s) = K(s)+1/2

G. Hill, 1838-1914 ₁₃

Betatron motion

 \hat{y}, \hat{x}

ĸ

Betatron tune

Betatron phase advance over 1 turn:

turn

Betatron tune:

The tune is the **number of betatron oscillations per turn**.

We *normally* only care about the **fractional part** of the tune! 64.31 is 0.31!

The operating tune values (working point) must be chosen to avoid resonance.

The tune values must be controlled to within better than 10⁻³, during all machine phases (ramp, squeeze, ...)

S

Dispersion

Emittance and beam size (i)

Motion of a single particle:

$$x(s) = A\sqrt{\beta_x(s)} \cos[\phi(s) + \phi_0] + D(s) \times \frac{\Delta p}{p}$$

(s), $\phi(s)$, $D(s) \rightarrow$ determined by lattice

 $A_i, \phi_i, p/p_i \rightarrow$ define individual trajectories

For an *ensemble* of particles:

The **transverse emittance**, ε , is the area of the phase-space ellipse. Usually, 95% confidence level given. Beam size = projection on *X*(*Y*) axis

Beam size

$$\sigma_x(s) = \sqrt{\epsilon \beta_x(s) + [D_x(s)\delta]^2}$$

Bunch energy spread

$$\delta = \left(\frac{\Delta p}{p}\right)_{\rm rms}$$

Emittance and beam size (ii)

Example for the LHC arc (450 GeV)

 $D_x^{\rm max} \approx 2{\rm m}$

... will see later what happens in the interaction points!

Chromaticity

$$Q' = \frac{\Delta Q}{\Delta p/p}$$

Particles with different energies have different betatron tunes.

Bad for the beam:

- Adds a tune spread
- Instabilities ("head-tail")

- Focusing error from momentum errors ~ -K p/p
 - Chromaticity corrections is done with **sextupole magnets**. The field changes as x^2 .

LHC:

2 sextupole families per plane per beam for chromaticity correction.

Acceleration

Acceleration is performed with electric fields fed into Radio-Frequency (RF) cavities. RF cavities are basically resonators tuned to a selected frequency.

In circular accelerators, the acceleration is done with small steps at each turn.

LHC: 8 RF cavities per beam (400 MHz), located in point 4

At the LHC, the acceleration from 450 GeV to 7 TeV lasts ~ 20 minutes (nominal!), with an average energy gain of ~ 0.5 MeV on each turn.

[Today, we ramp at a factor 4 less energy gain per turn than nominal!]

Buckets and bunches

- Introduction
- Recap. of accelerator physics
 - Basic equations
 - Measurements → tools
- LHC injector complex
 - Source and Linac2
 - PS Booster
 - Proton synchrotron
 - Super Proton Synchrotron
- LHC parameters and layout
 - Arcs and straight sections
 - Machine protection system

LHC beam position monitors (BPMs)

49mm aperture

4 buttons pick-up the e.m. signal induced by the beam. One can infer the transverse position in both planes.

8

LHC beam position monitors (BPMs)

Closed-orbit measurements

S. Redaelli, LPCC lectures, 07/09-04-2010

Dispersion measurements (i)

Measure the orbit offset for different beam energies.

Dispersion measurements (ii)

Multi-turn acquisitions

Tune measurements

- Kick the beam with a fast kicker
- Measure beam position at every turn
- Make an FFT

Tune measurements at the LEP

Da 0.50000 0.00085 dy 0.00297

S. Redaelli, LPCC lectures, 07/09-04-2010

Cu 0.50000 0.00382 FFT_vertunelin 31

Tune measurements at the LHC

Chromaticity measurements

→ We need to repeat tune measurements at different beam momenta

$$Q_y = Q_{y,0} + Q'_y \frac{\Delta p}{p} \rightarrow \text{Linear fit}$$

Beam size measurements

- Flying wire moved across the circulating beam
- Measure secondary particles
- Calibrate wire position to get size in mm

BSRT

B1

Synchrotron light monitor

B2

BSRT

8 🗆 ∈_v [mm mrad] 7 **Provides continuous** 6 beam size 5 measurements, e.g. 4 3 during ramp.

Longitudinal beam profile

Ionization chambers detect secondary electromagnetic showers generated by particle loss.

4000 of these guys in the machine!!

• 1 Unit:	Gray / s 💌 Scale	: Log 🔻 Integrati	on Time: 40 us	▼ Start 0 ÷ End	2047 - Losses: Max	c 🔻 Display: Acqu	isition v +REF
rs Filter Octan	t Filter Dump Filter	List Filter Regex Fi	lter				
(3545 / 3879)							
lion	Туре	Section	Sector	Beam	Transverse Position	Position on Element	Observed Element
uad	E IC	✓ LSS	🗹 1 - 2 🛛 🗹 5 - 6	Ream 1	🖌 External	✓ Entrance	
ther	V IC		2 - 3 2 - 7	R PEAU T	🖌 Internal	✓ Center✓ Exit	0/
Elements	SEM	V D3	🗹 3 - 4 🛛 🗹 7 - 8	⊯ Beam 2	🗹 Тор		70
obile		✓ ARC	🖌 4 - 5 🖌 8 - 1		✓ Bottom		

28.03.2010 17:41:10

S. Redaelli, LPCC lectures, 07/09-04-2010

- Introduction
- Recap. of accelerator physics
 - Basic equations
 - Measurements \rightarrow tools
- LHC injector complex
 - Source and Linac2
 - PS Booster
 - Proton synchrotron
 - Super Proton Synchrotron
- LHC parameters and layout
 - Arcs and straight sections
 - Machine protection system

The LHC accelerator complex

SPS Super Proton Synchrotron neutrinos

CNGS CERN Neutrinos Gran Sasso

CTF3 CLIC Test Facility 3

neutrons

Bottle of Hydrogen, to start with!

The real bottle is inside the cage

Linac2 - layout and parameters

Delivered beam current: Beam energy: Repetition rate: Radio-frequency system:

~150mA 90 keV (source) → 750 keV (RFQ) → 50 MeV 1 Hz 202 MHz

S. Redaelli, LPCC lectures, 07/09-04-2010

Linac2: some pictures

Downstream of Linac2, the proton beams will only encounter **circular accelerators** (and transfer lines)

Magnetic cycle

Injector cycling

PS Booster

- Distribution of Linac beam into 4 rings
 Recombination prior to transfer
- Constructed in the 70ies to increase the intensity into the PS
- Made of four stacked rings
- Acceleration to E_{kin}=1.4 GeV
- Intensities > 10¹³ protons per ring obtained (i.e., four times design!!)
- Several types of beams with different characteristics
 - → Physics beams for ISOLDE
 - → Beams for AD/PS/SPS physics
 - → LHC beams

Filling the PS with LHC beams

- In the single batch transfer, only rings 2,3 & 4 are filled on h=2 (i.e. 2 bunches per ring)
- The 6 bunches (1 or 2 extractions) can be transferred in one batch to the PS (on h=7)

S. Redaelli, LPCC lectures, 07/09-04-2010

Proton Synchrotron

From the Proton Synchroton to the Large Hadron Collider - 50 Years of Nobel Memories in High-Energy Physics

from Thursday 03 December 2009 at 14:00 to Friday 04 December 2009 at 17:00 (Europe/Zurich) at CERN (500-1-001 - Main Auditorium)

PS - bunch splitting

How it looks in reality

H. Damerau

How it looks in reality

1 trace / 356 revolutions (\sim 800 μs)

200 ns/div.

How it looks in reality

H. Damerau

Super-Proton Synchrotron

LHC beams in the SPS

Nominal LHC beams at the SPS

Nominal LHC beams basically achieved in the SPS in 2004! Injectors have been since long ready for the nominal LHC...

S. Redaelli, LPCC lectures, 07/09-04-2010

57

If anything goes wrong...

Failure in SPS during setting-up of LHC beam (25/10/04) Extraction septum supply tripped due to EMC from the beam In 11ms the field dropped 5% 3.4×10^{13} p+ @ 450GeV were wrongly extracted onto aperture Chamber and magnet were damaged and had to be replaced

B. Goddard

How do we get 2808 bunches ??

S. Redaelli, LPCC lectures, 07/09-04-2010

SPS-to-LHC transfer lines

Courtesy of J. Uythoven

Ion beam path to the LHC

Low-energy ion ring (LEIR)

S. Redaelli, LPCC lectures, 07/09-04-2010

CERN Control Centre - Layout

CCC can be packed in these days...

3.5 TeV collisions on March 30th

... and even more in the past

Our secret to attract people

- Introduction
- Recap. of accelerator physics
 - Basic equations
 - Measurements → tools
- LHC injector complex
 - Source and Linac2
 - PS Booster
 - Proton synchrotron
 - Super Proton Synchrotron
- LHC parameters and layout
 - Arcs and straight sections
 - Machine protection system

LHC: view from top

LHC layout - from bottom

Overall view of the LHC experiments.

Layout and accelerator systems

Interaction point 1: ATLAS

Interaction point 2: ALICE

S. Redaelli, LPCC lectures, 07/09-04-2010

Interaction point 5: CMS

Interaction point 8: LHCb

- 1. A septum dipole magnet (with thin coil) is used to bring the injected beam close to the circulating beam.
- 2. A fast pulsing dipole magnet ('kicker') is fired synchronously with the arrival of the injected beam: deflects the injected beam onto the circulating beam path.
- 3. 'Stack' the injected beams one behind the other.

2. 1. A septum dipole magnet (with thin coil) is used to bring the extracted beam (far f to the circulating beam.

1. 2. A fast pulsing dipole magnet ('kicker') is fired synchronously with the arrival of the i *abort gap* : deflects the *beam to be dumped onto the dump line*

3. All the following bunches are extracted.

Injection into the LHC - layout

Injection elements

From the LHC Page1

TED TI2 position:	BEAM	TDI P2 gaps/mm	up: 9.05	down: 9.04
TED TI8 position:	BEAM	TDI P8 gaps/mm	up: 8.32	down: 8.36

S. Redaelli, LPCC lectures, 07/09-04-2010

Role of the TDI collimator

The TDI is one of the key injection protection collimators: Protects the machine in case of (1) missing kicks on injected beam and (2) asynchronous kicker firing on the circulating beam. It must be closed around the circulating beam trajectory when the kicker is ON.

Beam dump (IP6)

Dilution of dumped beams

This is the **ONLY** element in the LHC that can withstand the impact of the full 7 TeV beam ! Nevertheless, the dumped beam must be painted to keep the peak energy densities at a tolerable level !

S. Redaelli, LPCC lectures, 07/09-04-2010

Radio frequency (IP4)

8 RF superconducting cavities per ring at 400.790 MHz: 2 modules per beam, 4 cavities per module

- 16 MV/beam at 7 TeV
- 1 MV /cavity at injection
- 2 MV/cavity during physics

RF - tunnel view

The LHC arcs

1232 main dipoles + 3700 multipole corrector magnets

392 main quadrupoles + 2500 corrector magnets

MCS: Sextupole corrector (b3)

MCDO: Assembly of spool correctors consists of an octupole insert MCO (b4) and a decapole magnet MCD (b5) MQT: Trim quarupole corrector MS: arc sextupole corrector

- MQS: skew quad lattice corrector
- MCBH: Horizontal dipole corrector
- MCBV: Vertical dipole corrector
- MO: Lattice octupole

Layout of the collimation system

Two warm cleaning insertions

IR3: Momentum cleaning 1 primary (H) 4 secondary (H,S) 4 shower abs. (H,V) IR7: Betatron cleaning 3 primary (H,V,S) 11 secondary (H,V,S) 5 shower abs. (H,V)

Local cleaning at triplets

8 tertiary (2 per IP)

- Passive absorbers for warm magnets
- Physics debris absorbers

Transfer lines (13 collimators) Injection and dump protection (10)

108 collimators and absorbers

About 500 degrees of freedom. Most advance system for accelerators!

Min collimator gap with beam

Timeseries Chart between 2010-03-26 04:00:00 and 2010-03-26 22:00:00 (LOCAL TIME)

Timeseries Chart between 2010-03-26 04:00:00 and 2010-03-26 22:00:00 (LOCAL_TIME)

Interaction region layout

With more than 154 bunches, we need a crossing angle to avoid parasitic collisions outside the IP.
Beams are separated in the other plane during injection and ramp

$$\mathcal{L} = \frac{N^2 n_b f_{\text{rev}}}{4\pi\sigma_x \sigma_y} F$$

$$F = \frac{1}{\sqrt{1 + \left(\frac{\theta_c \sigma}{\sigma_y}\right)^2}}$$

S. Redaelli, LPCC lectures, 07/09-04-2010

S. Redaelli, LPCC lectures, 07/09-04-2010

Beam envelope

Machine protection

10.4 GJ

362 MJ

Why do we have to care??

Energy stored in the superconducting magnet Energy stored in the 7 TeV beams

Why do we need so much?

Magnet energy is driven by the high field requirement. Beam stored energy is driven by luminosity increase!

= IP beta function ($\beta_x = \beta_y$) beam-beam tunnel length = norm. transv. emittance limits constant = protons per bunch = revolution frequency = geometrical correction $(N_{p} \cdot F)$ = rest mass, e.g. of proton rev E_{stored} = velocity of light С $4\pi \cdot m_0 c$ \mathcal{E}_n LHC luminosity is increased **IR** optics **Injectors** limits via stored energy! limits **Robustness limits**

The stored energy challenge

Machine protection philosophy

S. Redaelli, LPCC lectures, 07/09-04-2010

In practice....

S. Redaelli, LPCC lectures, 07/09-04-2010

Conclusions

We have reviewed the basic accelerator physics concepts

- We have seen how the LHC beam requirements are met by the injector chain
- We have introduced the main LHC accelerator systems

We are now ready to see how the LHC is operated!

Agenda for the second part of the lecture:

- LHC commissioning and 2010-11 running scenarios
- Operational phases
- How do we operate the LHC

Acknowledgments

- **Material on the injectors**: G. Rumolo R. Steerenberg G. Bellodi K. Cornelis D. Manglunki E. Métral *I* LHC layout and systems: M. Lamont R. Bailey
 - J. Wenninger
 - B. Goddard
 - R. Assmann
 - P. Baudrenghien
 - W. Herr

Reserve slides

Effect of sextupole magnets

Closed orbit

Closed orbit = closed, periodic solution of the equation of motion.

Ideal machine: orbit centred in the magnets.

Real world: imperfections of magnetic field cause perturbations of the

$$x(s) = \frac{\sqrt{\beta(s)}}{2\sin(\pi Q)} \times \int \sqrt{\beta(t)} G(t) \cos[|\phi(t) - \phi(s)| - \pi Q] dt$$

Linac2: source

HT SUPPLY 90kV

This is a "duoplasmatron" proton source!

p⁺: Cathode Tube with H $H_2 + e^- \rightarrow H_2^+ + 2 e^ H_2^+ e^- \rightarrow H^+ + H + e^ H + e^- \rightarrow H^+ + 2 e^-$

http://psdoc.web.cern.ch/PSDoc/acc/ad/VisiteGuidePS/ Animations/Duoplasmatron/Duoplasmatron.html

Linac2 source - details

http://psdoc.web.cern.ch/PSDoc/acc/ad/VisiteGuidePS/Animations/Duoplasmatron/Duoplasmatron.html

LHC beams in the PSB

Longitudinal profile "mountain range"

Transverse profile

Intensity, longitudinal emittance and bunch length within specs!

For completeness...

Variety of LHC beams at the booster

LHC Beam Type	Intensity/ bunch [x10 ¹¹]	Number of bunches (PSB rings)	ε _{rms, norm.} [µm]	ε _{long.} [eVs]	_ Values needed to have triple
25 ns physics	1.62-16.2	6 (4+2)	2.5	1.3	splitting at injection in the PS without additional longitudinal
50 ns physics	8.1	6 (4+2)	2.5	1.3	emittance blow up
75 ns physics	0.92-5.29	6 (4+2)	2.5	0.9	
Indiv. physics	0.24-1.35	1 or 4	2.5	0.3	Including margin for blow up (need to be 3.5 μm at
Pilot beam	0.05	1	2.5	≤0.3	the SPS extraction)
Probe beam	0.05-0.23	1	<1.0	≤0.2	

Intensity ranges covered from 10% of the nominal values up to the nominal (and even above nominal for MDs) Assumed double batch transfer to the PS (h=1 in the PSB, 4 rings + 2 rings) -now replaced by a single batch transfer for LHC50 and LHC75 beams (h=2 in the PSB, 3 rings)

Fast extractions from the SPS

5 extraction kicker magnets (MKE) operated at 50 kV.6 septum magnets (MSE), installed on a movable girder.4 horizontal and 4 vertical bumper magnets:

- Horizontal extraction bump of 31.1 mm @ monitor BPCE.418 TPSG protection element for the MSE.

LHC beam scraping at the SPS

1 LHC injection batch in the SPS > 2 MJ A few % of particles in the bunch tails could quench the LHC cold magnets!

First B1/B2 interleaved extractions

SPS 2007 run. Courtesy of J. Wenninger Beam intensity lower than nominal (no dedicated studies for beam optimization)

Cycle for interleaved extractions of Beam1 and Beam2 successfully setup in 2007! "Page 1" could announce that we were ready for "Filling the LHC...."

Shorter cycles also available for lower beam intensities: faster and more flexible operation for commissioning scenarios

Ion beam path to the LHC

Ion beams for the LHC

Schematic LEIR layout

Low-energy ion ring (LEIR)

S. Redaelli, LPCC lectures, 07/09-04-2010

The "early" LHC ion beam in the SPS (2007)

Extracted Lead ion beam in TT60!

First ion beams in the LHC (2009)

S. Redaelli, LPCC lectures, 07/09-04-2010

LHC injection: Technical layout

Corrector magnet count

Name	Quantity	Purpose
MSCB	376	Combined chromaticity/ closed orbit correctors
MCS	2464	Dipole spool sextupole for persistent currents at injection
MCDO	1232	Dipole spool octupole/decapole for persistent currents
МО	336	Landau octupole for instability control
MQT	256	Trim quad for lattice correction
MCB	266	Orbit correction dipoles
MQM	100	Dispersion suppressor quadrupoles
MQY	20	Enlarged aperture quadrupoles

Inside one cell

