zfp compression on a CMS NanoAOD

Erik Wallin

IRIS-HEP Fellowship (Based at Lund Uni., Sweden)
with Oksana Shadura and Brian Bockelman

zfp Introduction &

"zfp is a BSD licensed open source library for compressed floating-point arrays
that support high throughput read and write random access. |...]

zfp was designed to achieve high compression ratios and therefore uses lossy
but optionally error-bounded compression. Bit-for-bit lossless compression of
integer and floating-point arrays is also supported. zfp is often more accurate
and faster than other lossy compressors, especially in its OpenMP and CUDA
multithreaded modes."

From: https://computing.linl.gov/projects/floating-point-compression

Erik Wallin

zfp Introduction &

In short:

Lossy (optionally lossless)
High throughput read and write random access
https://github.com/LLNL/ZFP

Peter Lindstrom. Fixed-Rate Compressed Floating-Point Arrays. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2674-2683,
December 2014. doi:10.1109/TVCG.2014.2346458

Erik Wallin 3

https://github.com/LLNL/ZFP

!

zfp NanoAOD and goal

Compression in CMS NanoAODs today:
1. Float mantissas are first truncated, to a user specified precision
E.g. 1.1101011 — 1.11010000

This is done in libminifloat.h in CMSSW (Abbreviated LMF on plots)
https://github.com/cms-sw/cmssw/blob/master/DataFormats/Math/
interface/libminifloat.h

2. Followed by the usual lossless compression methods available (which
improves due to the float truncation)

Let's see how zfp compares to: LZMA, ZLIB, Iz4 and Zstd

Erik Wallin 4

https://github.com/cms-sw/cmssw/blob/master/DataFormats/Math/interface/libminifloat.h
https://github.com/cms-sw/cmssw/blob/master/DataFormats/Math/interface/libminifloat.h

zfp Methodology &

Super naive implementation:

e Pure Python (3.6) implementation using external libraries: pyzfp, Zstd and
Iz4. As well as LZMA and ZLIB from the standard library.

e Flattening all arrays (no jagged arrays)
We compare:

e zfp on data that is not compressed by libminifloat
e LZMA, 1z4, ZLIB, Zstd on data that is already compressed by libminifloat

Erik Wallin 5

Small Pregenerated NanoAOD CMS NanoAOD:

e 9600 events
e 21 MB in compressed size
e 15% of branches (in "Events") hold floats

Following are compression results on various branches:

Erik Wallin 6

zfp Results

Erik Wallin

Compression ratio

NanoAOD Electron_mass (pure Python implementation)

——- zfp w/ CMSSW precision

—— zfp w/ varying precision

==: LMF + LZMA (max comp. Ivl)
==+ LMF + ZLIB (max comp. Ivl)
==+ LMF + Iz4 (max comp. Ivl)
==: LMF + Zstd (max comp. Ivl)
= zfp then LZMA (max comp. Ivl)
—— zfp then Zstd (max comp. Ivl)

-log_2(precision) (for solid lines)

zfp Results &

NanoAOD Electron_energyErr (pure Python implementation)

300 === == zfp w/ CMSSW precision
—— zfp w/ varying precision
==: LMF + LZMA (max comp. Ivl)
2.754 . LMF + ZLIB (max comp. Ivl)
+ LMF + 1z4 (max comp. Ivl)
2.50 1 + LMF + Zstd (max comp. Ivl)
g zfp then LZMA (max comp. Ivl)
B —— zfp then Zstd (max comp. Ivl)
T 2.25 1 L P
c
.2
3 2.00
2
a
£ 175
O
1.50 A
1.25 A
1.00 A

6 8 10 12 14 16 18 20 22
-log_2(precision) (for solid lines)

Erik Wallin 8

zfp Results

Erik Wallin

Compression ratio

NanoAOD Electron_pt (pure Python implementation)

1.8 1

=
)
L

.
>
L

1.2

1.0 1

——- zfp w/ CMSSW precision

—— zfp w/ varying precision

==: LMF + LZMA (max comp. Ivl)

==+ LMF + ZLIB (max comp. Ivl)

==+ LMF + Iz4 (max comp. Ivl)

==: LMF + Zstd (max comp. Ivl)
zfp then LZMA (max comp. Ivl)

—— zfp then Zstd (max comp. Ivl)

-log_2(precision) (for solid lines)

zfp Results

Erik Wallin

Compression ratio

NanoAOD Jet_rawFactor (pure Python implementation)

3.54

e
o
L

N
wn
L

[
o
|

1.5

——- zfp w/ CMSSW precision

—— zfp w/ varying precision

==: LMF + LZMA (max comp. Ivl)

==+ LMF + ZLIB (max comp. Ivl)

==+ LMF + Iz4 (max comp. Ivl)

==: LMF + Zstd (max comp. Ivl)

= zfp then LZMA (max comp. Ivl)
TN T T T TTTTTTTTTT —— zfp then Zstd (max comp. Ivl)

6 8 10 12 14 16 18 20 22

-log_2(precision) (for solid lines)

zfp Table of (some) branches

Branch name

Uncompressed (kB)

zfp* + LZMA (kB)

LMF + LZMA size (KB)

Electron_mass

44.6

13.3

22.5

Electron_energyErr | 44.6 19.5 14.8
Electron_pt 44.6 45.3 39.7
Jet_rawFactor 372.8 145.8 125.3

*CMSSW precision

Erik Wallin

zfp Evaluation &

zfp can outperform other compression methods, but not consistently.

It may yield larger sizes when working with near lossless precision, see
Electron_pt.

In Electron_energyErr and Jet_rawFactor we see that poor results from zfp can
be somewhat saved if followed by LZMA or Zstd.

Erik Wallin 12

zfp Estimating filesize &

Let’s estimate a whole filesize.

Uncompressed size of all (data) branches: 7.7 MB

1. Compress all float-branches with zfp and then LZMA
2. Compress other branches with LZMA

— 2.3 MB in total.

Normal LZMA compression on the same branches (with libminifloat enabled)
— 1.8 MB

So zfp + LZMA seems to perform slightly worse than LMF + LZMA for this
dataset.

zfp + LZMA performed better than LMF + LZMA in 12% of branches.

Erik Wallin 13

A ROOT implementation is being made right now, so that it can actually be
tested properly.

Chain compression methods, e.g. zfp followed by lossless ones. Maybe there is
a good combination.

Erik Wallin 14

Backup slides

Erik Wallin 15

zfp Distributions

Electron_mass

htemp

Entries

3000 Mean

Std Dev

11149
-8.852e-05
0.02128

2500

2000

1500

1000

500

J\\\|HII|HH‘\IH'IIH‘HH‘\I

P R T I I I T Lo L a

)
w
|
o
n
-
o
o
o

0.2

|
0.3

Electron_mass

Erik Wallin

zfp Distributions

Electron_energyErr

htemp
Entries 11149
Mean 4.738
- Std Dev 13.02

9000

8000

7000

6000

5000

4000

3000

2000

1000

[B [B P Lo |
100 200 300 400 500
Electron_energyErr

Erik Wallin 17

zfp Distributions

5000 —

4000

3000

2000

1000

Erik Wallin

Electron_pt
htemp
Entries 11149
Mean 26.9
Std Dev 37.36
o o e L TN I S TR B
400 600 800 1000 1200
Electron_pt

zfp Distributions

Jet_rawFactor

14000

htemp

Entries
Mean
Std Dev

93204
0.0002333
0.1604

12000

10000

8000

6000

4000

2000

|
0.5
Jet_rawFactor

o
fo

|
-
o

|
-

Erik Wallin 19

zfp Additional results

NanoAOD Electron_phi (pure Python implementation)

——- zfp w/ CMSSW precision
—— zfp w/ varying precision
2.44 ==: LMF + LZMA (max comp. Ivl)
==+ LMF + ZLIB (max comp. Ivl)
224 ==+ LMF + Iz4 (max comp. Ivl)
! == LMF + Zstd (max comp. Ivl)
8 = zfp then LZMA (max comp. Ivl)
'ag 2.0 —— zfp then Zstd (max comp. Ivl)
jd
=
.2
v 1.8
o
=
%
€164
O
1.4+
1.2 4
1.0 T T T T T T T T T

-log_2(precision) (for solid lines)

Erik Wallin 20

zfp Additional results

Erik Wallin

Compression ratio

NanoAOD Electron_dz (pure Python implementation)

3.5 4

o
<)
|

[N
n
L

[
o
|

1.5

——- zfp w/ CMSSW precision

—— zfp w/ varying precision

==: LMF + LZMA (max comp. Ivl)

==+ LMF + ZLIB (max comp. Ivl)

==+ LMF + Iz4 (max comp. Ivl)

==: LMF + Zstd (max comp. Ivl)
zfp then LZMA (max comp. Ivl)

—— zfp then Zstd (max comp. Ivl)

-log_2(precision) (for solid lines)

21

zfp Additional results

Erik Wallin

Compression ratio

NanoAOD Jet_area (pure Python implementation)

-------------------------- zfp w/ CMSSW precision
—— zfp w/ varying precision
==: LMF + LZMA (max comp. Ivl)
==+ LMF + ZLIB (max comp. Ivl)
_______________________ ——- LMF + Iz4 (max comp. Ivl)
==: LMF + Zstd (max comp. Ivl)
_______________________ = zfp then LZMA (max comp. Ivl)
—— zfp then Zstd (max comp. Ivl)

6 8 10 12 14 16 18 20 22

-log_2(precision) (for solid lines)

22

	Presentation
	introduction

