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zfp Introduction &

"zfp is a BSD licensed open source library for compressed floating-point arrays
that support high throughput read and write random access. |...]

zfp was designed to achieve high compression ratios and therefore uses lossy
but optionally error-bounded compression. Bit-for-bit lossless compression of
integer and floating-point arrays is also supported. zfp is often more accurate
and faster than other lossy compressors, especially in its OpenMP and CUDA
multithreaded modes."

From: https://computing.linl.gov/projects/floating-point-compression
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zfp Introduction &

In short:

Lossy (optionally lossless)
High throughput read and write random access
https://github.com/LLNL/ZFP

Peter Lindstrom. Fixed-Rate Compressed Floating-Point Arrays. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2674-2683,
December 2014. doi:10.1109/TVCG.2014.2346458
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https://github.com/LLNL/ZFP

!

zfp NanoAOD and goal

Compression in CMS NanoAODs today:
1. Float mantissas are first truncated, to a user specified precision
E.g. 1.1101011 — 1.11010000

This is done in libminifloat.h in CMSSW (Abbreviated LMF on plots)
https://github.com/cms-sw/cmssw/blob/master/DataFormats/Math/
interface/libminifloat.h

2. Followed by the usual lossless compression methods available (which
improves due to the float truncation)

Let's see how zfp compares to: LZMA, ZLIB, Iz4 and Zstd
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https://github.com/cms-sw/cmssw/blob/master/DataFormats/Math/interface/libminifloat.h
https://github.com/cms-sw/cmssw/blob/master/DataFormats/Math/interface/libminifloat.h

zfp Methodology &

Super naive implementation:

e Pure Python (3.6) implementation using external libraries: pyzfp, Zstd and
Iz4. As well as LZMA and ZLIB from the standard library.

e Flattening all arrays (no jagged arrays)
We compare:

e zfp on data that is not compressed by libminifloat
e LZMA, 1z4, ZLIB, Zstd on data that is already compressed by libminifloat
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Small Pregenerated NanoAOD CMS NanoAOD:

e 9600 events
e 21 MB in compressed size
e 15% of branches (in "Events") hold floats

Following are compression results on various branches:
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zfp Results
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Compression ratio

NanoAOD Electron_mass (pure Python implementation)
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zfp Results &

NanoAOD Electron_energyErr (pure Python implementation)
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zfp Results
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Compression ratio

NanoAOD Electron_pt (pure Python implementation)
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zfp Results
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Compression ratio

NanoAOD Jet_rawFactor (pure Python implementation)
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zfp Table of (some) branches

Branch name

Uncompressed (kB)

zfp* + LZMA (kB)

LMF + LZMA size (KB)

Electron_mass

44.6

13.3

22.5

Electron_energyErr | 44.6 19.5 14.8
Electron_pt 44.6 45.3 39.7
Jet_rawFactor 372.8 145.8 125.3

*CMSSW precision
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zfp Evaluation &

zfp can outperform other compression methods, but not consistently.

It may yield larger sizes when working with near lossless precision, see
Electron_pt.

In Electron_energyErr and Jet_rawFactor we see that poor results from zfp can
be somewhat saved if followed by LZMA or Zstd.
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zfp Estimating filesize &

Let’s estimate a whole filesize.

Uncompressed size of all (data) branches: 7.7 MB

1. Compress all float-branches with zfp and then LZMA
2. Compress other branches with LZMA

— 2.3 MB in total.

Normal LZMA compression on the same branches (with libminifloat enabled)
— 1.8 MB

So zfp + LZMA seems to perform slightly worse than LMF + LZMA for this
dataset.

zfp + LZMA performed better than LMF + LZMA in 12% of branches.
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A ROOT implementation is being made right now, so that it can actually be
tested properly.

Chain compression methods, e.g. zfp followed by lossless ones. Maybe there is
a good combination.
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Backup slides
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zfp Distributions

Electron_mass
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zfp Distributions

Electron_energyErr
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zfp Distributions
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zfp Distributions

Jet_rawFactor
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zfp Additional results

NanoAOD Electron_phi (pure Python implementation)
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zfp Additional results
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Compression ratio

NanoAOD Electron_dz (pure Python implementation)
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zfp Additional results
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Compression ratio

NanoAOD Jet_area (pure Python implementation)
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