
zfp compression on a CMS NanoAOD

Erik Wallin

IRIS-HEP Fellowship (Based at Lund Uni., Sweden)
with Oksana Shadura and Brian Bockelman



zfp Introduction

"zfp is a BSD licensed open source library for compressed floating-point arrays
that support high throughput read and write random access. [...]
zfp was designed to achieve high compression ratios and therefore uses lossy
but optionally error-bounded compression. Bit-for-bit lossless compression of
integer and floating-point arrays is also supported. zfp is often more accurate
and faster than other lossy compressors, especially in its OpenMP and CUDA
multithreaded modes."

From: https://computing.llnl.gov/projects/floating-point-compression

Erik Wallin 2



zfp Introduction

In short:

• Lossy (optionally lossless)
• High throughput read and write random access
• https://github.com/LLNL/ZFP

• Peter Lindstrom. Fixed-Rate Compressed Floating-Point Arrays. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2674-2683,
December 2014. doi:10.1109/TVCG.2014.2346458

Erik Wallin 3

https://github.com/LLNL/ZFP


zfp NanoAOD and goal

Compression in CMS NanoAODs today:

1. Float mantissas are first truncated, to a user specified precision

E.g. 1.1101011→ 1.11010000

This is done in libminifloat.h in CMSSW (Abbreviated LMF on plots)
https://github.com/cms-sw/cmssw/blob/master/DataFormats/Math/
interface/libminifloat.h

2. Followed by the usual lossless compression methods available (which
improves due to the float truncation)

Let’s see how zfp compares to: LZMA, ZLIB, lz4 and Zstd

Erik Wallin 4

https://github.com/cms-sw/cmssw/blob/master/DataFormats/Math/interface/libminifloat.h
https://github.com/cms-sw/cmssw/blob/master/DataFormats/Math/interface/libminifloat.h


zfp Methodology

Super naive implementation:

• Pure Python (3.6) implementation using external libraries: pyzfp, Zstd and
lz4. As well as LZMA and ZLIB from the standard library.
• Flattening all arrays (no jagged arrays)

We compare:

• zfp on data that is not compressed by libminifloat
• LZMA, lz4, ZLIB, Zstd on data that is already compressed by libminifloat

Erik Wallin 5



zfp Data

Small Pregenerated NanoAOD CMS NanoAOD:

• 9600 events
• 21 MB in compressed size
• 15% of branches (in "Events") hold floats

Following are compression results on various branches:

Erik Wallin 6



zfp Results

Erik Wallin 7



zfp Results

Erik Wallin 8



zfp Results

Erik Wallin 9



zfp Results

Erik Wallin 10



zfp Table of (some) branches

Branch name Uncompressed (kB) zfp* + LZMA (kB) LMF + LZMA size (kB)
Electron_mass 44.6 13.3 22.5
Electron_energyErr 44.6 19.5 14.8
Electron_pt 44.6 45.3 39.7
Jet_rawFactor 372.8 145.8 125.3

*CMSSW precision

Erik Wallin 11



zfp Evaluation

zfp can outperform other compression methods, but not consistently.

It may yield larger sizes when working with near lossless precision, see
Electron_pt.

In Electron_energyErr and Jet_rawFactor we see that poor results from zfp can
be somewhat saved if followed by LZMA or Zstd.

Erik Wallin 12



zfp Estimating filesize

Let’s estimate a whole filesize.
Uncompressed size of all (data) branches: 7.7 MB

1. Compress all float-branches with zfp and then LZMA
2. Compress other branches with LZMA

→ 2.3 MB in total.

Normal LZMA compression on the same branches (with libminifloat enabled)
→ 1.8 MB

So zfp + LZMA seems to perform slightly worse than LMF + LZMA for this
dataset.

zfp + LZMA performed better than LMF + LZMA in 12% of branches.
Erik Wallin 13



zfp Outlook

A ROOT implementation is being made right now, so that it can actually be
tested properly.

Chain compression methods, e.g. zfp followed by lossless ones. Maybe there is
a good combination.

Erik Wallin 14



zfp Backup

Backup slides

Erik Wallin 15



zfp Distributions

Erik Wallin 16



zfp Distributions

Erik Wallin 17



zfp Distributions

Erik Wallin 18



zfp Distributions

Erik Wallin 19



zfp Additional results

Erik Wallin 20



zfp Additional results

Erik Wallin 21



zfp Additional results

Erik Wallin 22


	Presentation
	introduction


