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Seismic isolation — Why?

e Ground all around us moves about a
micron all the time.

* Inthe frequencies of the detection band
we need to reduce displacements of
mirrors to about 10°°m/sqrt(Hz).

* At the same time we need to make sure
that at DC mirror positions / cavity
lengths are kept stable, e.g. so that laser
light resonates in the cavities.
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frequency [Hz]

linear spectral density of the horizontal seismic vibration of the ground, measured on the Virgo
site; the seismic noise turns out to be roughly isotropic and well approximated by the function
107 f m/\Hz (see dashed line)
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Passive

Basic Principle: Resonator (pendulum,
spring etc) used above resonance
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* Simple, effective, only way to get to really low noise.

* Inreality very complex. Many modes, crosscouplings
etc. Also need to deal with resonances
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VS Active

Basic Principle: Measure with
inertial sensors and correct

(1) Inertially decoupled platform

(4) Feedback Inertial Sensor ':'
(5) Control Force /
| ;s

(6) Feedforward
Inertial Sensors

0) Support N \

(Stlucl:&;;on (2) Suspension spring (3) Relative motion sensor
* Broadband, less prominent resonances
* Canonly be as good as sensor noise




Seismic Isolation in Advanced LIGO: Ham-ISI
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Seismic Isolation in Advanced LIGO: BSC-ISI
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Seismic Isolation in (advanced) Virgo
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vertical cross-section of a tower, showing inner details and the SA


https://doi.org/10.1260/0263-0923.30.1.63

Seismic noise in ET-D LF
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Many mechanical resonances

Longitudinal Suspension thermal noise
mode 10cm, 10um, 1g

Plus angular DoF

Pitch
mode Vertical Ist violin
mode |mode
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Credit: Jan-Simon Hennig
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Need high Q for each mode to reduce thermal noise in the wings
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Suspension Thermal Noise
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Mirror mass

*  Mirrors need to be suspended in order to decouple them from
seismic.

*  Thermal noise in metal wires and glass fibres causes horizontal
movement of mirror.

. Relevant loss terms originate from the bulk, surface and thermo-
elastic loss of the fibres + bond and weld loss.

*  Thermal noise in blade springs causes vertical movement which
couples via imperfections of the suspension into horizontal
noise.

Loss angle

P2 Maastricht University Stefan Hild Liege, Jan 2018  Slide
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How to reduce Suspension Thermal Noise?

Improve
fibre
geometry/

profile —]1.5

Bending points,
energy stored via
bending and neck

profile can be
potentially further
optimised.
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¢ Please note: Technical readiness of the tech\

AGTS niques might vary strongly! Also this plot repre-
sents my personal view (not vetted byLSC).

(Cost + Complexity) \
\

Increase length of Cooling of the suspension
final pendulum stage. to cryogenic temperatures.

Allows the push suspension Usually also requires a change of materials.

thermal noise out detection band.

Stefan Hild Liege, Jan 2018 Slide
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Cryogenic mirror suspension

e ET-LF will go for cryogenic

i
mirrors and a cryogenic |

last stage suspension. Qm« z
* Problem: Noise! AN | v IaNE

Intermediate thermal shield

Lower thermal shield
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More complete list of requirements for seismic
isolation and final stage suspension

1.
2.

"

Reduce seismic noise to 102°m/sqrt(Hz) in detection band (f>2Hz)

Provide low suspension thermal noise, while at the same time providing
enough thermal conductivity to allow to cool mirrors. (Conflicting
requirements!)

Provide a low-noise cooling systems which does not spoil/short-circuit the
pendulum chain of main suspension chain (cryo-fluids, pulse tubes, sorption
coolers, superfluid He)

Attenuate micro-seismic peak in order to ease locking and control.

Provide low noise (suspended reference mass!) actuators to control all
degrees of freedom of pendulum chain (not only longitudinal, but also pitch

and yaw).
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Case Study: Seismic Isolation
For ETpathfinder
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Prototypiong cryogenic silicon mirrors
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Case Study: Seismic Isolation for ETpathfinder
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Case Study: Seismic Isolation for ETpathfinder

ET-PF payload

FEM simulated performance
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Ground vibration transmission from cold finger is still dominant...
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A 6D interferometric inertial isolation system

Vacuum enclosure C. M. Mow-Lowry
School of Physics and Astronomy and Institute of Gravitational Wave Astronomy,

University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

(C Isolated platform
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| Stable
suspension .

N

D. Martynov
LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and

) School of Physics and Astronomy and Institute of Gravitational Wave Astronomy,
+— Soft i University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
Interferometers SRp— (Dated: February 5, 2019)
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FIG. 2. A noise budget showing (left) the predicted angular self-noise for rotation around the horizontal axes of the 6D isolator
and (right) the predicted horizontal displacement self-noise assuming that the angular noise couples with a factor of g/w?’.
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d LIGO

Credit: LIGO Laboratory, MIT/Caltech
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* Modecleaning and mode healing
using optical cavities




Credit: LIGO Laboratory, MIT/Caltech
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Refining construction of Infrastructure
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