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A self-interacting Higgs (as SM predicts) would be unlike anything yet seen in nature. 
All other interactions change particle identity. 
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Deviations from SM Higgs boson self-coupling cause a 
modified potential that allows first-order electroweak 
phase transition and hence an explanation of the observed 
matter vs anti-matter asymmetry!
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Figure 8. Modification of the self-coupling �H3/�H3,0 as a function of the coe�cients �j from the di↵erent
UV potentials given in Eq.(11). Blue lines represent first-order phase transitions and red dotted lines
second-order phase transitions. The cuto↵ is ⇤ = 2 TeV.

constant �H3 . Alternatively, we can fix �c/Tc for di↵erent UV potentials and find that a decrease
in �H3 corresponds to a decrease also in �H4 or an increase in Tc.

Finally, Fig. 8 explicitly shows the connection between the strength of the observable e↵ect
at LHC scales, measured by �H3/�H3,0 and the size of the new physics contribution �V at the
microscopic scale ⇤, measured by the value of the dimensionless coe�cients �j . The nature of the
electroweak phase transition is encoded in the coloring of the lines. The onset of the first-order
phase transition is at values that can also be read o↵ from Fig. 7: for logarithmic modifications
we find the lowest value of �H3/�H3,0 ⇡ 1.4, for the �

6 modification �H3/�H3,0 ⇡ 1.5, and for
exponential modifications �H3/�H3,0 ⇡ 1.9. This size of all modifications can be probed in the
high-luminosity run at the LHC. Importantly, the Higgs self-couplings grow continuously as a
function of �j while �c/Tc remains zero till the onset of the first-order phase transition and only
then starts to grow continuously.

IV. OUTLOOK

Higgs pair production or the measurement of the Higgs self coupling is an extraordinarily
interesting LHC analysis. We find that it is well motivated by modified Higgs potentials which
allow for a strong first-order electroweak phase transition and hence an explanation of the observed
matter vs anti-matter asymmetry. We have studied a wide range of such modifications to the
Higgs potential, especially potentials that cannot be expanded as an e↵ective field theory. We used
the functional renormalization group to describe the dependence on the field value � and on the
temperature T . For all classes of potentials considered here, there exists an appropriate choice of
model parameters, for which the phase transition is of first order and su�ciently strong, �c/Tc & 1.

Our numerical analysis indicates that the requirement �c/Tc = 1 corresponds to a critical scale
of the order of 10 TeV for all our potentials, where the potentials become strongly coupled. Below
this scale we can rely on our assumed potentials to describe LHC signals. We then found that a
strong first-order phase transition universally predicts an enhancement of the Higgs self-couplings
�H3 & 1.5�H3,0 and �H4 & 4�H4,0. Extending earlier studies, we systematically established this
connection between a first-order transition and a measurable deviation of the Higgs self couplings,
employing a method that can describe systems with multiple physical scales in a controlled manner.
While it might be possible that a new physics model features a strong first-order transition with all
e↵ects on �

H3/4 canceling accidentally [9], none of our examples falls into this class. We conclude

hep-ph/1711.00019

1st  order 

2nd  order 

We need to probe size of modification down to 1.4,  
the expected uncertainty of the measurement should be 𝒪(10%)

Direct test of cubic coupling only with HH production
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Figure 1.2: Total production cross sections for Higgs pairs within the SM via gluon fusion,
vector-boson fusion, double Higgs-strahlung and double Higgs bremsstrahlung off top quarks.
PDF4LHC15 parton densities have been used with the scale choices according to Table 1.1. The size
of the bands shows the total uncertainties originating from the scale dependence and the PDF+Æs
uncertainties.

Figure 1.3: Higgs pair invariant mass distribution at leading order for the different contributions to
the gluon fusion production mechanism and their interference.
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1000

Higgs boson pairs are predicted  
to be 1000× rarer than single Higgs  
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gg → HH

Production dominated by loop-induced gluon-fusion 
Destructively interfering box and triangle diagrams 
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Figure 1.1: Diagrams contributing to Higgs pair production: (a) gluon fusion, (b) vector-boson fu-
sion, (c) double Higgs-strahlung and (d) double Higgs bremsstrahlung off top quarks. The trilinear
Higgs coupling contribution is marked in red.

including partial finite top quark mass effects [24]. Very recently, also the third order corrections
have been computed in the heavy top quark limit [25]. The QCD corrections increase the total cross
section by about a factor of two with respect to the LO prediction, and they will be discussed in
more detail in the following section.

Vector-boson fusion. The vector-boson fusion (VBF) qq ! H H qq is the second-largest produc-
tion mechanism, and it is dominated by t-channel W and Z exchange in analogy to single Higgs
production. It involves continuum diagrams originating from two Higgs radiations off the virtual
W or Z bosons, and diagrams in which a single Higgs boson (off-shell) splits into a Higgs pair
(Fig. 1.1b). The QCD corrections are only known in the structure-function approach, i.e. where
only the t-channel W and Z exchange is taken into account and interference effects for external
quarks of the same flavor are neglected. This approximation is valid at the level of a percent similar
to the single Higgs case. Within this approach the QCD corrections to the total cross section are
known up to N3LO [26–28], while the exclusive calculation is available at NNLO [29]. The pertur-

σSM
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Production dominated by t-channel W and Z exchange 

In SM a cancellation dictated by perturbative unitarity 
occurs for longitudinally polarized vector bosons
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including partial finite top quark mass effects [24]. Very recently, also the third order corrections
have been computed in the heavy top quark limit [25]. The QCD corrections increase the total cross
section by about a factor of two with respect to the LO prediction, and they will be discussed in
more detail in the following section.

Vector-boson fusion. The vector-boson fusion (VBF) qq ! H H qq is the second-largest produc-
tion mechanism, and it is dominated by t-channel W and Z exchange in analogy to single Higgs
production. It involves continuum diagrams originating from two Higgs radiations off the virtual
W or Z bosons, and diagrams in which a single Higgs boson (off-shell) splits into a Higgs pair
(Fig. 1.1b). The QCD corrections are only known in the structure-function approach, i.e. where
only the t-channel W and Z exchange is taken into account and interference effects for external
quarks of the same flavor are neglected. This approximation is valid at the level of a percent similar
to the single Higgs case. Within this approach the QCD corrections to the total cross section are
known up to N3LO [26–28], while the exclusive calculation is available at NNLO [29]. The pertur-
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including partial finite top quark mass effects [24]. Very recently, also the third order corrections
have been computed in the heavy top quark limit [25]. The QCD corrections increase the total cross
section by about a factor of two with respect to the LO prediction, and they will be discussed in
more detail in the following section.

Vector-boson fusion. The vector-boson fusion (VBF) qq ! H H qq is the second-largest produc-
tion mechanism, and it is dominated by t-channel W and Z exchange in analogy to single Higgs
production. It involves continuum diagrams originating from two Higgs radiations off the virtual
W or Z bosons, and diagrams in which a single Higgs boson (off-shell) splits into a Higgs pair
(Fig. 1.1b). The QCD corrections are only known in the structure-function approach, i.e. where
only the t-channel W and Z exchange is taken into account and interference effects for external
quarks of the same flavor are neglected. This approximation is valid at the level of a percent similar
to the single Higgs case. Within this approach the QCD corrections to the total cross section are
known up to N3LO [26–28], while the exclusive calculation is available at NNLO [29]. The pertur-
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The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F△, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process

6

(a) gg double-Higgs fusion: gg → HH

H

H

H

g

g

Q

H

Hg

g

Q

(b) WW/ZZ double-Higgs fusion: qq′ → HHqq′

q

q′

q

q′

V ∗

V ∗

H
H

(c) Double Higgs-strahlung: qq̄′ → ZHH/WHH

q

q̄′ V ∗

V

H

H

g

g

t̄

t
H
H

q

q̄
g

(d) Associated production with top-quarks: qq̄/gg → tt̄HH

Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.

where

t̂± = −
ŝ
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
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ŝ
and

t̂
denoting

the
partonic

M
andelstam

variables.
T
he

triangular
and

b
ox

form

factors
F
△
,
F
!
and

G
!
approach

constant
values

in
the

infinite
top

quark
m
ass

lim
it,

F
△
→

23 ,
F
!
→

−
23 ,

G
!
→

0
.

(6)

T
he

expressions
w
ith

the
com

plete
m
ass

dep
endence

are
rather

lengthy
and

can
b
e
found

in
R
ef.

[11]
as

w
ell

as
the

N
L
O

Q
C
D

corrections
in

the
L
E
T
approxim

ation
in

R
ef.

[18].

T
he

full
L
O

expressions
for

F
△
, F

!
and

G
!
are

used
w
herever

they
app

ear
in

the

N
L
O

corrections
in

order
to

im
prove

the
p
erturbative

results,
sim

ilar
to

w
hat

has
b
een

done
in

the
single

H
iggs

production
case

w
here

using
the

exact
L
O
expression

reduces
the

disagreem
ent

b
etw

een
the

full
N
L
O

result
and

the
L
E
T
result

[7, 19].

For
the

num
erical

evaluation
w
e
have

used
the

publicly
available

code
HPAIR

[44]
in

w
hich

the
know

n
N
L
O

corrections
are

im
plem

ented.
A
s
a
central

scale
for

this
process

6

(a) gg
double-Higgs fusion: gg →

H
HH

H
H

g

g

Q

H

H

g

g

Q

(b) W
W
/ZZ

double-Higgs fusion: qq ′→
H
H
qq ′

q

q ′

q

q ′

V ∗

V ∗

H
H

(c) D
ouble

Higgs-strahlung: qq̄ ′→
ZH

H
/W

H
H

q

q̄ ′

V ∗
V

H
H

g

g

t̄

t
H
H

q

q̄

g

(d) Associated
production

with
top-quarks: qq̄/gg →

t̄tH
H

Figure 1: Som
e generic Feynm

an
diagram

s contributing to
Higgs pair production

at hadron

colliders.

where

t̂
± =

− ŝ
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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ŝ
∓
√

1−
4M2

H

ŝ
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The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F△, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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Figure 1.1: Diagrams contributing to Higgs pair production: (a) gluon fusion, (b) vector-boson fu-
sion, (c) double Higgs-strahlung and (d) double Higgs bremsstrahlung off top quarks. The trilinear
Higgs coupling contribution is marked in red.

including partial finite top quark mass effects [24]. Very recently, also the third order corrections
have been computed in the heavy top quark limit [25]. The QCD corrections increase the total cross
section by about a factor of two with respect to the LO prediction, and they will be discussed in
more detail in the following section.

Vector-boson fusion. The vector-boson fusion (VBF) qq ! H H qq is the second-largest produc-
tion mechanism, and it is dominated by t-channel W and Z exchange in analogy to single Higgs
production. It involves continuum diagrams originating from two Higgs radiations off the virtual
W or Z bosons, and diagrams in which a single Higgs boson (off-shell) splits into a Higgs pair
(Fig. 1.1b). The QCD corrections are only known in the structure-function approach, i.e. where
only the t-channel W and Z exchange is taken into account and interference effects for external
quarks of the same flavor are neglected. This approximation is valid at the level of a percent similar
to the single Higgs case. Within this approach the QCD corrections to the total cross section are
known up to N3LO [26–28], while the exclusive calculation is available at NNLO [29]. The pertur-
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including partial finite top quark mass effects [24]. Very recently, also the third order corrections
have been computed in the heavy top quark limit [25]. The QCD corrections increase the total cross
section by about a factor of two with respect to the LO prediction, and they will be discussed in
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including partial finite top quark mass effects [24]. Very recently, also the third order corrections
have been computed in the heavy top quark limit [25]. The QCD corrections increase the total cross
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including partial finite top quark mass effects [24]. Very recently, also the third order corrections
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Figure 1.2: Total production cross sections for Higgs pairs within the SM via gluon fusion,
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Low-energy effects of New Physics can modify the interactions of the Higgs bosons
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derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
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Figure 1: Variation of the NLO K-factor with the trilinear coupling at
p
s = 14TeV.
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Figure 2: Higgs boson pair invariant mass distributions for various values of � atp
s = 14TeV. The uncertainty bands are from scale variations as described in the text.

In Fig. 3 we show the transverse momentum distributions p
h
T of one (any) Higgs bo-

son for di↵erent � values. The dip for � ⇠ 2.4 is still present, however much less

pronounced than in the mhh distribution.

Fig. 4 demonstrates the e↵ect of variations of the top quark Yukawa coupling yt on

the mhh and p
h
T distributions, where � is fixed to the SM value. Using eq. (2.5), it

is apparent that yt variations can be obtained from appropriate � variations with the

same code. For example, �(yt = 1.2,� = 1) = (1.2)4 �(yt = 1,� = 1/1.2).

– 8 –

(a) (b)

Figure 3: Higgs boson transverse momentum distributions for various values of � atp
s = 14TeV.

10�6

10�5

10�4

10�3

d
�
/d

m
h
h
[p
b
/G

eV
]

ra
ti
o

LHC 14 TeV
PDF4LHC15
NLO, µ = mhh/2

10�1

100

300 400 500 600 700 800 900 1000

d
�
/d

m
h
h
[p
b
/G

eV
]

ra
ti
o

yt = 1.0
yt = 0.8
yt = 1.2

mhh [GeV]

10�1

100

300 400 500 600 700 800 900 1000

(a) (b)

Figure 4: Higgs boson pair invariant mass distributions, and distributions of the

transverse momentum of one (any) Higgs boson for non-SM values of the top quark

Yukawa coupling yt at
p
s = 14TeV, including scale uncertainties.

3.3 Discussion of parton shower related uncertainties

In this section we show distributions for NLO results matched to a parton shower, focus-

ing mostly on the transverse momentum of the Higgs boson pair. For this distribution

NLO is the first non-trivial order, and therefore it is particularly sensitive to di↵erences

in the treatment of radiation by the parton shower. We compare the Pythia 8.2 [81]

and Herwig 7.1 [82] parton showers, applied directly to the POWHEG Les Houches events

(LHE). In the Herwig case, we also compare the default shower (the angular-ordered q̃-

shower) with the dipole shower. In addition, we assess the uncertainties stemming from
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Modifications of the shape and integral.  
The kinematics of the H bosons are modified.  

mHH is significantly modified once any vertices is not SM 
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Figure 1: Variation of the NLO K-factor with the trilinear coupling at
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Figure 2: Higgs boson pair invariant mass distributions for various values of � atp
s = 14TeV. The uncertainty bands are from scale variations as described in the text.

In Fig. 3 we show the transverse momentum distributions p
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pronounced than in the mhh distribution.

Fig. 4 demonstrates the e↵ect of variations of the top quark Yukawa coupling yt on
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T distributions, where � is fixed to the SM value. Using eq. (2.5), it
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Yukawa coupling yt at
p
s = 14TeV, including scale uncertainties.
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kl ⇡ 2.5, with strong effects on the shape for kl values between 0 and 7. In the SM, the mHH
distribution is wide with a broad peak at mHH ⇡ 400 GeV. These effects are illustrated in
Figure 4b.
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Figure 3. Total HH production cross section as function of kl [27] .
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Figure 4. Distributions of the box, interference, and triangle components that contribute to the SM
signal (a). Since these have, respectively, no, linear, and quadratic dependence on kl, the mHH shapes
largely differ for various coupling hypotheses (b).

Experimental analyses use both the total cross section and the differential distributions
in mHH to constrain the value of the self-coupling. At the current sensitivity, the capability
to constrain the self-coupling largely stems from the enhanced HH cross section. However,
the differential mHH information is important to develop analyses that are optimal over a
broad range of kl values, and to solve the degeneracy between kl values that result in the
same total cross section values.

1.3.2. ggF Production in EFTs
In the previous section, we implicitly assumed that BSM physics might manifest solely

through the modification of the Higgs boson self-coupling, and that the interpretations of
experimental searches in terms of constraints on kl assume that all the other couplings
are fixed to the SM predictions. While this is a valid operative assumption if we want
to determine how precisely we can measure the Higgs boson self-coupling given the
available data, a more generic study of BSM physics effects requires the framework of EFTs
introduced in Section 1.2.

HH searches at CMS 
Marcel Rieger

3 Event kinematics & effect on analyses

●  spectrum depends on kλ 
■ Softer for large | kλ | 
■ Hardest close to max. interference + double structure 

● Effect on analyses 
1. Large |kλ| 
✓ Sensitivity due to enhanced cross section 
✗ Soft  spectrum reduces selection efficiency 

2. Medium kλ 
✓ Hard  spectrum leads to clear (possibly boosted) signatures 
✗ Enhancement low or even negative 
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Figure 1.12: Higgs boson transverse momentum distributions at 14 TeV for the considered ∑∏ values
[64].

Figure 1.13: 3-dimensional visualisation of the mH H distribution at 14 TeV, as a function of ∑∏ and
mH H [64].

Parton Shower Matching

Already in a pure fixed-order NLO calculation there are contributions in both the Born phase space
¡B and in the real emission phase space ¡R =¡B £¡1. In a parton shower matched calculation, we
denote them by B̄(¡B ) and H(¡R ), respectively:

B̄(¡B ) = B(¡B )+V (¡B )+
Z

D(¡R )£(µ2
PS ° t (¡R ))d¡1, (1.10)

H(¡R ) = R(¡R )°D(¡R )£(µ2
PS ° t (¡R )) . (1.11)

In Eqs. (1.10) and (1.11), B denotes the leading-order contributions, V the UV-subtracted virtual
corrections, R the real-emission corrections, and D the differential infrared subtraction terms. The
scaleµPS is the parton shower starting scale and t (¡R ) is the evolution variable of the parton shower.
Through variations of µPS, contributions can be shuffled around between B̄ and H while leaving
their sum constant.

When considering Eqs. (1.10) and (1.11) by themselves, real emission configurations are gen-
erated only in H events. Furthermore, the emissions are suppressed in the phase space region

1.4. Differential predictions and MC generators for gluon fusion 19

Figure 1.10: Higgs boson pair invariant mass distributions at 14 TeV for (left) positive small values
of ∑∏ and (right) larger or negative values of ∑∏ [64].

Figure 1.11: Normalised Higgs boson pair invariant mass distributions at 14 TeV for (left) positive
small values of ∑∏ and (right) larger or negative values of ∑∏ [64].

1.4 Differential predictions and MC generators for gluon fusion
G. Heinrich, S.P. Jones, M. Kerner, S. Kuttimalai, E. Vryonidou

The non-resonant production of a pair of Higgs bosons in gluon fusion is available within several
public Monte Carlo programs. Currently, the most sophisticated predictions which include a parton
shower are based on the NLO matrix-element including a finite top quark mass [17, 18]. The fixed-
order result was recently re-calculated and extended to allow also for a running top quark mass [19].
The NLO calculation was first interfaced to the POWHEG-BOX [67, 68] and MG5_aMC@NLO [48, 80]
in Ref. [52], and to SHERPA [81] in Ref. [53].

The matching and parton shower uncertainties have been extensively studied in the litera-
ture [52, 53, 82], and were found to be large for certain observables. Similar effects have been ob-
served in other processes including the production of a Higgs boson in gluon fusion [83, 84] and
Z-boson pair production in gluon fusion [85].

Here, we briefly review the current status of these uncertainties focusing on one of the most sen-
sitive distributions (the pT of the di-Higgs boson system). We will summarise the MC@NLO [86] and
POWHEG [66] matching schemes used in the literature. Results obtained from the POWHEG-BOX,
MG5_aMC@NLO and SHERPA implementations and via analytic resummation [87] are compared.
The shower uncertainty observed for the POWHEG-BOX implementation will also be discussed.
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Figure 1.10: Higgs boson pair invariant mass distributions at 14 TeV for (left) positive small values
of ∑∏ and (right) larger or negative values of ∑∏ [64].

Figure 1.11: Normalised Higgs boson pair invariant mass distributions at 14 TeV for (left) positive
small values of ∑∏ and (right) larger or negative values of ∑∏ [64].
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The non-resonant production of a pair of Higgs bosons in gluon fusion is available within several
public Monte Carlo programs. Currently, the most sophisticated predictions which include a parton
shower are based on the NLO matrix-element including a finite top quark mass [17, 18]. The fixed-
order result was recently re-calculated and extended to allow also for a running top quark mass [19].
The NLO calculation was first interfaced to the POWHEG-BOX [67, 68] and MG5_aMC@NLO [48, 80]
in Ref. [52], and to SHERPA [81] in Ref. [53].

The matching and parton shower uncertainties have been extensively studied in the litera-
ture [52, 53, 82], and were found to be large for certain observables. Similar effects have been ob-
served in other processes including the production of a Higgs boson in gluon fusion [83, 84] and
Z-boson pair production in gluon fusion [85].

Here, we briefly review the current status of these uncertainties focusing on one of the most sen-
sitive distributions (the pT of the di-Higgs boson system). We will summarise the MC@NLO [86] and
POWHEG [66] matching schemes used in the literature. Results obtained from the POWHEG-BOX,
MG5_aMC@NLO and SHERPA implementations and via analytic resummation [87] are compared.
The shower uncertainty observed for the POWHEG-BOX implementation will also be discussed.
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kl ⇡ 2.5, with strong effects on the shape for kl values between 0 and 7. In the SM, the mHH
distribution is wide with a broad peak at mHH ⇡ 400 GeV. These effects are illustrated in
Figure 4b.
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Figure 3. Total HH production cross section as function of kl [27] .

250 300 350 400 450 500 550 600 650 700
 [GeV]HHm

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

 [f
b/

2G
eV

]
H

H
/d

m
σd

Box
Triangle
Interference
SM

HH, 13 TeV→gg

(a)

 [GeV]HHm
250 300 350 400 450 500 550

a.
u.

0

0.005

0.01

0.015

0.02

0.025
 = 1 , SMλk
 = 0 , only box diagramλk
 = 2.45 , maximal interferenceλk
 = 5 , soft spectrumλk
 = 20 , mainly triangle diagramλk

(13 TeV)

(b)

Figure 4. Distributions of the box, interference, and triangle components that contribute to the SM
signal (a). Since these have, respectively, no, linear, and quadratic dependence on kl, the mHH shapes
largely differ for various coupling hypotheses (b).

Experimental analyses use both the total cross section and the differential distributions
in mHH to constrain the value of the self-coupling. At the current sensitivity, the capability
to constrain the self-coupling largely stems from the enhanced HH cross section. However,
the differential mHH information is important to develop analyses that are optimal over a
broad range of kl values, and to solve the degeneracy between kl values that result in the
same total cross section values.

1.3.2. ggF Production in EFTs
In the previous section, we implicitly assumed that BSM physics might manifest solely

through the modification of the Higgs boson self-coupling, and that the interpretations of
experimental searches in terms of constraints on kl assume that all the other couplings
are fixed to the SM predictions. While this is a valid operative assumption if we want
to determine how precisely we can measure the Higgs boson self-coupling given the
available data, a more generic study of BSM physics effects requires the framework of EFTs
introduced in Section 1.2.
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Figure 1.12: Higgs boson transverse momentum distributions at 14 TeV for the considered ∑∏ values
[64].

Figure 1.13: 3-dimensional visualisation of the mH H distribution at 14 TeV, as a function of ∑∏ and
mH H [64].

Parton Shower Matching

Already in a pure fixed-order NLO calculation there are contributions in both the Born phase space
¡B and in the real emission phase space ¡R =¡B £¡1. In a parton shower matched calculation, we
denote them by B̄(¡B ) and H(¡R ), respectively:

B̄(¡B ) = B(¡B )+V (¡B )+
Z

D(¡R )£(µ2
PS ° t (¡R ))d¡1, (1.10)

H(¡R ) = R(¡R )°D(¡R )£(µ2
PS ° t (¡R )) . (1.11)

In Eqs. (1.10) and (1.11), B denotes the leading-order contributions, V the UV-subtracted virtual
corrections, R the real-emission corrections, and D the differential infrared subtraction terms. The
scaleµPS is the parton shower starting scale and t (¡R ) is the evolution variable of the parton shower.
Through variations of µPS, contributions can be shuffled around between B̄ and H while leaving
their sum constant.

When considering Eqs. (1.10) and (1.11) by themselves, real emission configurations are gen-
erated only in H events. Furthermore, the emissions are suppressed in the phase space region
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Figure 1.10: Higgs boson pair invariant mass distributions at 14 TeV for (left) positive small values
of ∑∏ and (right) larger or negative values of ∑∏ [64].

Figure 1.11: Normalised Higgs boson pair invariant mass distributions at 14 TeV for (left) positive
small values of ∑∏ and (right) larger or negative values of ∑∏ [64].

1.4 Differential predictions and MC generators for gluon fusion
G. Heinrich, S.P. Jones, M. Kerner, S. Kuttimalai, E. Vryonidou

The non-resonant production of a pair of Higgs bosons in gluon fusion is available within several
public Monte Carlo programs. Currently, the most sophisticated predictions which include a parton
shower are based on the NLO matrix-element including a finite top quark mass [17, 18]. The fixed-
order result was recently re-calculated and extended to allow also for a running top quark mass [19].
The NLO calculation was first interfaced to the POWHEG-BOX [67, 68] and MG5_aMC@NLO [48, 80]
in Ref. [52], and to SHERPA [81] in Ref. [53].

The matching and parton shower uncertainties have been extensively studied in the litera-
ture [52, 53, 82], and were found to be large for certain observables. Similar effects have been ob-
served in other processes including the production of a Higgs boson in gluon fusion [83, 84] and
Z-boson pair production in gluon fusion [85].

Here, we briefly review the current status of these uncertainties focusing on one of the most sen-
sitive distributions (the pT of the di-Higgs boson system). We will summarise the MC@NLO [86] and
POWHEG [66] matching schemes used in the literature. Results obtained from the POWHEG-BOX,
MG5_aMC@NLO and SHERPA implementations and via analytic resummation [87] are compared.
The shower uncertainty observed for the POWHEG-BOX implementation will also be discussed.
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Figure 1.10: Higgs boson pair invariant mass distributions at 14 TeV for (left) positive small values
of ∑∏ and (right) larger or negative values of ∑∏ [64].

Figure 1.11: Normalised Higgs boson pair invariant mass distributions at 14 TeV for (left) positive
small values of ∑∏ and (right) larger or negative values of ∑∏ [64].

1.4 Differential predictions and MC generators for gluon fusion
G. Heinrich, S.P. Jones, M. Kerner, S. Kuttimalai, E. Vryonidou

The non-resonant production of a pair of Higgs bosons in gluon fusion is available within several
public Monte Carlo programs. Currently, the most sophisticated predictions which include a parton
shower are based on the NLO matrix-element including a finite top quark mass [17, 18]. The fixed-
order result was recently re-calculated and extended to allow also for a running top quark mass [19].
The NLO calculation was first interfaced to the POWHEG-BOX [67, 68] and MG5_aMC@NLO [48, 80]
in Ref. [52], and to SHERPA [81] in Ref. [53].

The matching and parton shower uncertainties have been extensively studied in the litera-
ture [52, 53, 82], and were found to be large for certain observables. Similar effects have been ob-
served in other processes including the production of a Higgs boson in gluon fusion [83, 84] and
Z-boson pair production in gluon fusion [85].

Here, we briefly review the current status of these uncertainties focusing on one of the most sen-
sitive distributions (the pT of the di-Higgs boson system). We will summarise the MC@NLO [86] and
POWHEG [66] matching schemes used in the literature. Results obtained from the POWHEG-BOX,
MG5_aMC@NLO and SHERPA implementations and via analytic resummation [87] are compared.
The shower uncertainty observed for the POWHEG-BOX implementation will also be discussed.
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kl ⇡ 2.5, with strong effects on the shape for kl values between 0 and 7. In the SM, the mHH
distribution is wide with a broad peak at mHH ⇡ 400 GeV. These effects are illustrated in
Figure 4b.
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Figure 3. Total HH production cross section as function of kl [27] .
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Figure 4. Distributions of the box, interference, and triangle components that contribute to the SM
signal (a). Since these have, respectively, no, linear, and quadratic dependence on kl, the mHH shapes
largely differ for various coupling hypotheses (b).

Experimental analyses use both the total cross section and the differential distributions
in mHH to constrain the value of the self-coupling. At the current sensitivity, the capability
to constrain the self-coupling largely stems from the enhanced HH cross section. However,
the differential mHH information is important to develop analyses that are optimal over a
broad range of kl values, and to solve the degeneracy between kl values that result in the
same total cross section values.

1.3.2. ggF Production in EFTs
In the previous section, we implicitly assumed that BSM physics might manifest solely

through the modification of the Higgs boson self-coupling, and that the interpretations of
experimental searches in terms of constraints on kl assume that all the other couplings
are fixed to the SM predictions. While this is a valid operative assumption if we want
to determine how precisely we can measure the Higgs boson self-coupling given the
available data, a more generic study of BSM physics effects requires the framework of EFTs
introduced in Section 1.2.
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Figure 1.12: Higgs boson transverse momentum distributions at 14 TeV for the considered ∑∏ values
[64].

Figure 1.13: 3-dimensional visualisation of the mH H distribution at 14 TeV, as a function of ∑∏ and
mH H [64].

Parton Shower Matching

Already in a pure fixed-order NLO calculation there are contributions in both the Born phase space
¡B and in the real emission phase space ¡R =¡B £¡1. In a parton shower matched calculation, we
denote them by B̄(¡B ) and H(¡R ), respectively:

B̄(¡B ) = B(¡B )+V (¡B )+
Z

D(¡R )£(µ2
PS ° t (¡R ))d¡1, (1.10)

H(¡R ) = R(¡R )°D(¡R )£(µ2
PS ° t (¡R )) . (1.11)

In Eqs. (1.10) and (1.11), B denotes the leading-order contributions, V the UV-subtracted virtual
corrections, R the real-emission corrections, and D the differential infrared subtraction terms. The
scaleµPS is the parton shower starting scale and t (¡R ) is the evolution variable of the parton shower.
Through variations of µPS, contributions can be shuffled around between B̄ and H while leaving
their sum constant.

When considering Eqs. (1.10) and (1.11) by themselves, real emission configurations are gen-
erated only in H events. Furthermore, the emissions are suppressed in the phase space region
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Figure 1.10: Higgs boson pair invariant mass distributions at 14 TeV for (left) positive small values
of ∑∏ and (right) larger or negative values of ∑∏ [64].

Figure 1.11: Normalised Higgs boson pair invariant mass distributions at 14 TeV for (left) positive
small values of ∑∏ and (right) larger or negative values of ∑∏ [64].

1.4 Differential predictions and MC generators for gluon fusion
G. Heinrich, S.P. Jones, M. Kerner, S. Kuttimalai, E. Vryonidou

The non-resonant production of a pair of Higgs bosons in gluon fusion is available within several
public Monte Carlo programs. Currently, the most sophisticated predictions which include a parton
shower are based on the NLO matrix-element including a finite top quark mass [17, 18]. The fixed-
order result was recently re-calculated and extended to allow also for a running top quark mass [19].
The NLO calculation was first interfaced to the POWHEG-BOX [67, 68] and MG5_aMC@NLO [48, 80]
in Ref. [52], and to SHERPA [81] in Ref. [53].

The matching and parton shower uncertainties have been extensively studied in the litera-
ture [52, 53, 82], and were found to be large for certain observables. Similar effects have been ob-
served in other processes including the production of a Higgs boson in gluon fusion [83, 84] and
Z-boson pair production in gluon fusion [85].

Here, we briefly review the current status of these uncertainties focusing on one of the most sen-
sitive distributions (the pT of the di-Higgs boson system). We will summarise the MC@NLO [86] and
POWHEG [66] matching schemes used in the literature. Results obtained from the POWHEG-BOX,
MG5_aMC@NLO and SHERPA implementations and via analytic resummation [87] are compared.
The shower uncertainty observed for the POWHEG-BOX implementation will also be discussed.
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Figure 1.10: Higgs boson pair invariant mass distributions at 14 TeV for (left) positive small values
of ∑∏ and (right) larger or negative values of ∑∏ [64].

Figure 1.11: Normalised Higgs boson pair invariant mass distributions at 14 TeV for (left) positive
small values of ∑∏ and (right) larger or negative values of ∑∏ [64].

1.4 Differential predictions and MC generators for gluon fusion
G. Heinrich, S.P. Jones, M. Kerner, S. Kuttimalai, E. Vryonidou

The non-resonant production of a pair of Higgs bosons in gluon fusion is available within several
public Monte Carlo programs. Currently, the most sophisticated predictions which include a parton
shower are based on the NLO matrix-element including a finite top quark mass [17, 18]. The fixed-
order result was recently re-calculated and extended to allow also for a running top quark mass [19].
The NLO calculation was first interfaced to the POWHEG-BOX [67, 68] and MG5_aMC@NLO [48, 80]
in Ref. [52], and to SHERPA [81] in Ref. [53].

The matching and parton shower uncertainties have been extensively studied in the litera-
ture [52, 53, 82], and were found to be large for certain observables. Similar effects have been ob-
served in other processes including the production of a Higgs boson in gluon fusion [83, 84] and
Z-boson pair production in gluon fusion [85].

Here, we briefly review the current status of these uncertainties focusing on one of the most sen-
sitive distributions (the pT of the di-Higgs boson system). We will summarise the MC@NLO [86] and
POWHEG [66] matching schemes used in the literature. Results obtained from the POWHEG-BOX,
MG5_aMC@NLO and SHERPA implementations and via analytic resummation [87] are compared.
The shower uncertainty observed for the POWHEG-BOX implementation will also be discussed.
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Figure 3. Performance of the algorithms for identifying hadronically decaying Higgs bosons (Left: H→bb; Right:
H→cc). A selection on the jet mass, 90 < mSD < 140 GeV, is applied in addition to the ML-based identification
algorithm when evaluating the signal and background efficiencies. For the signal (background), the generated
Higgs bosons (quarks and gluons) are required to satisfy 500 < pT < 1000 GeV and |η| < 2.4. For each of the two
DeepAK8-DDT algorithms, the marker indicates the performance of the nominal working point, DeepAK8-DDT
> 0, and its background efficiency (shown in the vertical axis) is different from the design value (5% or 2%) due to
the additional selection on the jet mass.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

 (13 TeV)

CMS
Simulation Preliminary

DeepAK8
DeepAK8-MD
ParticleNet
ParticleNet-MD
DeepAK8-DDT (5%)
DeepAK8-DDT (2%)

 vs. QCD multijetbb→H
| < 2.4gen

η < 1000 GeV, |gen
T

500 < p
 < 140 GeVSD90 < m

0 0.2 0.4 0.6 0.8 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

 (13 TeV)

CMS
Simulation Preliminary

DeepAK8
DeepAK8-MD
ParticleNet
ParticleNet-MD
DeepAK8-DDT (5%)
DeepAK8-DDT (2%)

 vs. QCD multijetcc→H
| < 2.4gen

η < 1000 GeV, |gen
T

500 < p
 < 140 GeVSD90 < m

��

7KH�EEEE�GHFD\�FKDQQHO�
,W�KDV�WKH�++�ODUJHVW�UDWH�a������60�HYHQWV�SURGXFHG�LQ�WKH�/+&�5XQ���SHULRG��/a����IE����

%XW�VHDUFKLQJ�IRU�VLJQDO�HYHQWV�LV�FKDOOHQJHG�E\�
WKH�ODUJH�SURGXFWLRQ�RI�PXOWL�MHW�ENJ��HYHQWV��4&'�PXOWLMHWa��������WRS�TXDUNVa������

2QH�ODUJH�FRQHG�
MHW��5 ����

7ZR�VHSDUDWH
MHWV��5 ����

�+ĺ�EE�H[SHULPHQWDO�ıQJHUSULQW�
GHSHQGV�RQ�+LJJV�S7

������������������������������������������������S7�+��>*H9@

([SHULPHQWDO�FKDOOHQJHV�
Ŷ E�TXDUN�MHW�RU�+�MHW�LGHQWLıFDWLRQ�Z�U�W�ODUJH�XVGJ�F�MHW�ENJ

Ŷ 2QOLQH�WULJJHU�DOJRULWKPV�DUH�FRPSOH[
ż 'HSHQGV�RQ�/��VHHG��+/7�WUDFNLQJ��MHW�UHFR�FDO��E�WDJJLQJ��HWF
ż &RQVWUDLQHG�E\�/��UDWH��+/7�&38�OLPLW�	�RXWSXW�UDWH
ż &RQVLVWHQF\�ZLWK�RĵLQH�DOJRULWKPV��H�J��E�WDJJLQJ��

Ŷ +LJJV�ERVRQ�UHFRQVWUXFWLRQ�DĳHFWHG�E\
ż /DUJH�MHW�FRPELQDWRULFV
ż 0LVVLQJ�HQHUJ\�IURP�QHXWULQRV�LQ�VHPL�OHSWRQLF�%�GHFD\V
ż -HW�FRQVWLWXHQWV�IURP�,65��)65�	�3LOH�XS

Ŷ 3UHFLVH�PRGHO�DQG�UHMHFWLRQ�RI�PXOWLMHW�ENJ�DUH�FUXFLDO-HW�FOXVWHULQJ�ZLWK�$QWL�N7��$.��DOJRULWKP

����������������������������������������������������������$7/$6�&06�1RQ�UHVRQDQW�EEEE�
��

7KH�EEEE�GHFD\�FKDQQHO�
,W�KDV�WKH�++�ODUJHVW�UDWH�a������60�HYHQWV�SURGXFHG�LQ�WKH�/+&�5XQ���SHULRG��/a����IE����

%XW�VHDUFKLQJ�IRU�VLJQDO�HYHQWV�LV�FKDOOHQJHG�E\�
WKH�ODUJH�SURGXFWLRQ�RI�PXOWL�MHW�ENJ��HYHQWV��4&'�PXOWLMHWa��������WRS�TXDUNVa������

2QH�ODUJH�FRQHG�
MHW��5 ����

7ZR�VHSDUDWH
MHWV��5 ����

�+ĺ�EE�H[SHULPHQWDO�ıQJHUSULQW�
GHSHQGV�RQ�+LJJV�S7

������������������������������������������������S7�+��>*H9@

([SHULPHQWDO�FKDOOHQJHV�
Ŷ E�TXDUN�MHW�RU�+�MHW�LGHQWLıFDWLRQ�Z�U�W�ODUJH�XVGJ�F�MHW�ENJ

Ŷ 2QOLQH�WULJJHU�DOJRULWKPV�DUH�FRPSOH[
ż 'HSHQGV�RQ�/��VHHG��+/7�WUDFNLQJ��MHW�UHFR�FDO��E�WDJJLQJ��HWF
ż &RQVWUDLQHG�E\�/��UDWH��+/7�&38�OLPLW�	�RXWSXW�UDWH
ż &RQVLVWHQF\�ZLWK�RĵLQH�DOJRULWKPV��H�J��E�WDJJLQJ��

Ŷ +LJJV�ERVRQ�UHFRQVWUXFWLRQ�DĳHFWHG�E\
ż /DUJH�MHW�FRPELQDWRULFV
ż 0LVVLQJ�HQHUJ\�IURP�QHXWULQRV�LQ�VHPL�OHSWRQLF�%�GHFD\V
ż -HW�FRQVWLWXHQWV�IURP�,65��)65�	�3LOH�XS

Ŷ 3UHFLVH�PRGHO�DQG�UHMHFWLRQ�RI�PXOWLMHW�ENJ�DUH�FUXFLDO-HW�FOXVWHULQJ�ZLWK�$QWL�N7��$.��DOJRULWKP

����������������������������������������������������������$7/$6�&06�1RQ�UHVRQDQW�EEEE�

Usage of infrared and collinear safe jet clustering algorithm.

Two separated jets (R=0.4) Two merged jets (R=0.8)

0 250 500 750 1000 pTH (GeV)

Boosted topology 

24invisible decay

CMS uses ParticleNet a novel jet substructure algorithm 
based on graph neural network architecture to identify the 
jets that contain the Higgs boson decay products 

ΔRb,b̄ ≈
2
γ

=
2mH

E
>

2mH

pT

Multivariate classifiers are used to identify the jets (and their substructure).

The separation of the two b quarks in the H decay  
depends on the H Lorentz boost

CMS DP-2020/002 
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High B   Low S/B
Highest branching ratio... but large multi-jet background!  

Mostly probes large mHH ⇒ sensitivity to HH events with large pTH 

Start from triggered events with ≥2 (ATLAS) or ≥3 (CMS) b-jets  
Signal Region (SR) two b-jet pairs compatible with a Higgs boson 
Data-driven background model based on SR event re-weighting

Main challenge is to build a precise model of the multi-jet background  
without a reliable simulation  

Strategy

ATLAS: ATLAS-CONF-2022-035    CMS: arXiv:2202.09617 / arXiv:2205.06667 
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HH → bbbb
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High B   Low S/B

Largest fraction of signal, large QCD O(%) signal acceptance, low QCD

Leading mHH > 1 TeV sensitivity

Highest branching ratio... but large multi-jet background!  
Mostly probes large mHH ⇒ sensitivity to HH events with large pTH 

Two topologies exploited 
Resolved Boosted

Start from triggered events with ≥2 (ATLAS) or ≥3 (CMS) b-jets  
Signal Region (SR) two b-jet pairs compatible with a Higgs boson 
Data-driven background model based on SR event re-weighting

Main challenge is to build a precise model of the multi-jet background  
without a reliable simulation  

Strategy

ATLAS: ATLAS-CONF-2022-035    CMS: arXiv:2202.09617 / arXiv:2205.06667 
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HH → bbbb : resolved and boosted searches
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ggF- and VBF-like event categories based on 
forward jets and kinematic properties of HH.  
Fit : mHH (ATLAS) / MVA classifier or mHH  (CMS).  

ggF- and VBF-like event categories based on 
forward jets and kinematic properties of HH. 
Machine-learning tagger for H→bb decay ID.  
Back. : data driven QCD, simulation tt̄
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Resolved Boosted

ATLAS: ATLAS-CONF-2022-035    CMS: arXiv:2202.09617 / arXiv:2205.06667 
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Medium B   Medium S/B
Intermediate branching ratio... but clean final state with moderate backgrounds! 

Channels :  
Categorization of events by production mode (CMS) and purity  
Machine learning : b-jet and  ID, H→bb candidate tagging  
Signal extraction: MVA classifiers (using kinematic informations)

μτh, eτh, τhτh

τ

Strategy

ATLAS: arXiv:2209.10910   CMS: arXiv:2206.09401 
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Medium B   Medium S/B
Intermediate branching ratio... but clean final state with moderate backgrounds! 

Channels :  
Categorization of events by production mode (CMS) and purity  
Machine learning : b-jet and  ID, H→bb candidate tagging  
Signal extraction: MVA classifiers (using kinematic informations)

μτh, eτh, τhτh

τ

Strategy

>> ݂ ##ᅽᅽ
 ##ᅽփᅽր- ##ᅽփᅽᇋ �M/ ##ᅽփᅽփ }M�H bi�i2b Y 7m`i?2` 2p2Mi +�i2;Q`B2b,r *Ja, 8 o"6@HBF2 `2;BQMb Y j ;;6@HBF2 `2;BQMb #�b2/ QM i?2 >݂##

iQTQHQ;v U`2bQHp2/ k#- `2bQHp2/ R#- #QQbi2/Vcr �hG�a, j BM+HmbBp2 `2;BQMb #�b2/ QM i?2 i`B;;2` bi`�i2;vX "�+F;`QmM/ KQ/2HHBM;,r ԣ ԣ۽ �M/ wYD2ib, bBKmH�iBQM rBi? /�i�@/`Bp2M +Q``2+iBQMbcr /�i�@/`Bp2M K2i?Q/ B7 � ;HmQM@ Q` [m�`F@BMBiB�i2/ D2i KBKB+b ᅽփX aB;M�H 2ti`�+iBQM, Jo� +H�bbB}2`b 7Q` #Qi? �hG�a �M/ *JaX

�X 62``�`B UllV >B;;bRy avKTQbBmK- *1_L- y9fydfkykk Rj f kkATLAS: arXiv:2209.10910   CMS: arXiv:2206.09401 
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Low B   High S/B
Tiny branching ratio... but very clean signature: excellent 𝑚𝛾𝛾 resolution and small backgrounds 

Enhanced sensitivity at low 𝑚𝐻𝐻, hence to the Higgs boson self-interaction. 

$7/$6�DQG�&06�
QRQ�UHVRQDQW�
++ĺṃṃEE

/RXLV�'p(UDPR��1,8�
0D[LPH�*RX]HYLWFK��,3�,�

�

Strategy

Di-photon trigger and event selection + 2 b-jets.  
Event categories based on mHH, various purity regions based on  
MVA outputs, ggF- and VBF-like topologies (in CMS).  
HH and single-H shapes from simulation. 
Continuum background shape from data. 

ATLAS: Phys. Rev. D 106 (2022) 05200 CMS: JHEP03 (2021) 257  
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mγγ spectrum is used to extract the final results  >> ݂ ##ᅭᅭ
 .B@T?QiQM i`B;;2` �M/ 2p2Mi

b2H2+iBQM Y k #@D2ibX 1p2Mi +�i2;Q`B2b #�b2/ QM,r ֈՇՇᆗᆗcr p�`BQmb Tm`Biv `2;BQMb
#�b2/ QM Jo� QmiTmibcr ;;6@ �M/ o"6@HBF2
iQTQHQ;B2b UBM *JaVX aB;M�H �M/ #�+F;`QmM/b,r >> �M/ bBM;H2@> b?�T2b
7`QK bBKmH�iBQMcr +QMiBMmmK #�+F;`QmM/
b?�T2 7`QK /�i�c �hG�a, T�`�K2i`B+ }i Q7ֈᆗᆗ QMHvX *Ja, T�`�K2i`B+ }i BM i?2	ֈᆗᆗϦ ֈՇՇ
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ATLAS fits the mγγ spectrum in each category  CMS performs a simultaneous fit in mγγ × mjj in each category

ATLAS: Phys. Rev. D 106 (2022) 05200 CMS: JHEP03 (2021) 257  
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7

from the limitated number of events both in the CR and in the region where the misidentifica-
tion rates are computed. Uncertainties that arise from the difference in the composition of the
sample from which the misidentification rate is computed are also taken into account.

6 Multivariate analysis
A boosted decision tree (BDT) is used to further discriminate signal from backgrounds. The
BDT is implemented in the TMVA tool of the ROOT analysis package [66], and trained using
simulated events in the 4` SR; training is done using the gluon-gluon HH process as signal and
all the other processes as background.

An optimal set of input variables was chosen maximizing the area under the receiver operating
characteristic curve for each resulting discriminator. The optimized set contains ten variables,
namely: the pT of each of the 4`, the DR between the reconstructed H ! ZZ⇤

! 4` and
H ! bb systems, the two b-tagging scores, the pT of each of the two jets with the highest value
of b-tagging score and their invariant mass.

The BDT is trained separately for each data-taking year and for each of the leptonic final states
(4µ, 4e, and 2e2µ), for a total of nine independent discriminators. Detailed studies were per-
formed on the discrimination ranking, variable correlations, and possible discriminator over-
training. Figure 3 shows the inclusive BDT discriminator distribution for simulated signal,
estimated background components, and data: different data-taking years and leptonic final
states are combined together (4µ, 4e, and 2e2µ). Signal and backgrounds normalisation results
from the fit procedure described in Section 8. The binning of the BDT output distribution is
chosen in order to have (almost) the same statistical uncertainties in the last 4–5 bins.

The output of the BDT is used in a statistical analysis as the input variable of a maximum
likelihood fit to set constraints on both the signal strength and the kl coupling modifier.
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Figure 3: Inclusive BDT distributions for simulated signal, estimated background components,
and data for the combination of the three different final states (4µ, 4e, and 2e2µ) and data-
taking years. In the ratio plot, the grey dashed shades represent the relative statistical uncer-
tainty on the total estimated background.
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Figure 7: Distribution in the output of the BDT trained for nonresonant HH production and
evaluated for the benchmark scenario JHEP04 BM7 for the 2`ss (upper left), 3` (upper right),
and 4` (lower) categories. The SM HH signal is shown for a cross section amounting to
30 times the value predicted in the SM. The distributions expected for the background pro-
cesses are shown for the values of nuisance parameters obtained from the ML fit of the sig-
nal+background hypothesis to the data.

expected upper limits on the HH production cross section as a function of kl, obtained from
the simultaneous fit of all seven search categories, are shown in Fig. 10, along with the limits
obtained for each category individually. The 3` WZ and 4` ZZ CRs are again included in all of
these fits.

The observed and expected limits on the ggHH production cross section for the twenty bench-
mark scenarios are shown in Fig. 11 and summarized in Table 6. The qqHH process can be
safely neglected for these measurements. The observed (expected) limits on nonresonant HH
production in the different benchmark scenarios range from 0.21 to 1.09 (0.16 to 1.16) pb, de-
pending on the scenario. These limits are comparable to, but somewhat higher, than those
obtained by the CMS measurement in the bbgg final state [41]. The variation in expected lim-
its reflects differences in the mHH distribution among the benchmark scenarios, which in turn
affect the pT and angles between the particles produced in the H boson decays. As a con-

SR-DF regions using the predicted and observed event counts in each region as inputs. The Top and
Z/�⇤+ HF normalisation corrections are also extracted from this fit and are found to di�er negligibly from
those presented in Table 3. All sources of systematic and statistical uncertainty in the signal and background
models are implemented as deviations from the nominal model, scaled by nuisance parameters that are
profiled in the fit. The p-value corresponding to the background-only hypothesis, giving the probability
that the data in the signal regions be at least as incompatible with the background-only hypothesis as that
observed in SR-SF and SR-DF, is p0 = 0.15 and corresponds to 1.05� significance. Distributions of mbb,
m`` , and dHH after performing background-only fits to data in the control regions and applying the Top
and Z/�⇤+ HF normalisation corrections are shown in Figure 3. The signal selection criteria are imposed
on all observables shown in Figure 3 apart from the one being plotted, except that the dHH requirement for
the mbb and m`` distributions is relaxed to dHH > 5. No significant excess of events over the expected
SM background is observed and upper limits are set on non-resonant Higgs boson pair production at 95%
confidence level (CL) using the CLs method [132]. Table 5 presents these upper limits and comparisons
with the SM prediction. The observed (expected) limit at 95% CL is 1.2 (0.9) pb, corresponding to 40 (29)
times the SM prediction.
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Figure 3: Distributions of mbb (left), m`` (middle), and the discriminant dHH (right). The distributions are shown
after the fit to data in the control regions under the background-only hypothesis. Each distribution includes both the
SF and DF events and imposes signal selection requirements on all quantities except the one being plotted, but the
requirement on dHH has been relaxed to dHH > 5 for the distributions of mbb and m`` . The HH ! bb`⌫`⌫ signal
(“HH”) is overlaid and has its cross-section scaled by a factor of 20 relative to the SM prediction for visualisation
purposes. The ratio of the data to the sum of the backgrounds is shown in the lower panel of each figure. The hatched
bands indicate the combined statistical and systematic uncertainty.

Table 5: Observed and expected upper limits on the ggF-initiated non-resonant HH production cross-section at
95% CL and their ratios to the SM prediction (�SM(gg ! HH) = 31.05 ± 1.90 fb [13–20]). The ±1� and ±2�
variations about the expected limit are also shown. Uncertainties in the SM cross-section are taken into account
when computing the upper limits on the cross-section ratio.

�2� �1� Expected +1� +2� Observed
� (gg ! HH) [pb] 0.5 0.6 0.9 1.3 1.9 1.2
� (gg ! HH) /�SM (gg ! HH) 14 20 29 43 62 40
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Figure 7: Distribution in the output of the BDT trained for nonresonant HH production and
evaluated for the benchmark scenario JHEP04 BM7 for the 2`ss (upper left), 3` (upper right),
and 4` (lower) categories. The SM HH signal is shown for a cross section amounting to
30 times the value predicted in the SM. The distributions expected for the background pro-
cesses are shown for the values of nuisance parameters obtained from the ML fit of the sig-
nal+background hypothesis to the data.

expected upper limits on the HH production cross section as a function of kl, obtained from
the simultaneous fit of all seven search categories, are shown in Fig. 10, along with the limits
obtained for each category individually. The 3` WZ and 4` ZZ CRs are again included in all of
these fits.

The observed and expected limits on the ggHH production cross section for the twenty bench-
mark scenarios are shown in Fig. 11 and summarized in Table 6. The qqHH process can be
safely neglected for these measurements. The observed (expected) limits on nonresonant HH
production in the different benchmark scenarios range from 0.21 to 1.09 (0.16 to 1.16) pb, de-
pending on the scenario. These limits are comparable to, but somewhat higher, than those
obtained by the CMS measurement in the bbgg final state [41]. The variation in expected lim-
its reflects differences in the mHH distribution among the benchmark scenarios, which in turn
affect the pT and angles between the particles produced in the H boson decays. As a con-
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where σ is the production cross-section and B is the branching fraction. 
Perfect agreement with SM expectations would yield all µ equal to one.

A first test of compatibility is performed by fitting all data from pro-
duction modes and decay channels with a common signal-strength 
parameter, µ. At the time of discovery, the common µ was found 
to be 0.87 ± 0.23. The new combination of all the Run 2 data yields 
µ = 1.002 ± 0.057, in excellent agreement with the SM expectation. 
The uncertainties in the new measurement correspond to an improve-
ment by a factor of 4.5 in precision compared with what was achieved 
at the time of discovery. At present, the theoretical uncertainties in the 
signal prediction, and the experimental statistical and the systematic 
uncertainties separately contribute at a similar level, and they are 0.036, 
0.029 and 0.033, respectively.

Relaxing the assumption of a common signal-strength parameter, 
and introducing different µi and µf, our measurements are shown in 
Fig. 2. The production modes ggH, VBF, WH, ZH and ttH are all observed 
with a significance of 5 s.d. or larger.

The κ framework for coupling modifiers
BSM physics is expected to affect the production modes and decay 
channels in a correlated way if they are governed by similar interac-
tions. Any modification in the interaction between the Higgs boson 
and, for example, the W bosons and top quarks would affect not only 
the H → WW (Fig. 1g) or H → γγ (Fig. 1i,j) decay rates but also the pro-
duction cross-section for the ggH (Fig. 1a), WH (Fig. 1c) and VBF (Fig. 1b) 
modes. To probe such deviations from the predictions of the SM, the 
κ framework38 is used. The quantities, such as σi, Γ f and ΓH, computed 
from the corresponding SM predictions, are scaled by κi

2, as indicated 
by the vertex labels in Fig. 1. As an example, for the decay H → γγ pro-
ceeding via the loop processes of Fig. 1i,j, the branching fraction is 
proportional to κ γ

2 or κ κ(1.26 − 0.26 )W t
2. In the SM, all κ values are equal 

to one.

A first such fit to Higgs boson couplings introduces two parameters, 
κV and κf, scaling the Higgs boson couplings to massive gauge bosons 
and to fermions, respectively. With the limited dataset available at the 
time of discovery, such a fit provided first indications for the existence 
of both kinds of coupling. The sensitivity with the present data is much 
improved, and both coupling modifiers are measured to be in agree-
ment, within an uncertainty of 10%, with the predictions from the SM, 
as shown in Fig. 3 (left).

A second fit is performed to extract the coupling modifiers κ for the 
heavy gauge bosons (κW and κZ) and the fermions probed in the present 
analyses (κt, κb, κτ and κµ). Predictions for processes that in the SM occur 
via loops of intermediate virtual particles, for example, Higgs boson 
production via ggH, or Higgs boson decay to a pair of gluons, photons 
or Zγ, are computed in terms of the κi above. The result is shown in 
Fig. 3 (right), as a function of the mass of the probed particles. The 
remarkable agreement with the predictions of the BEH mechanism 
over three orders of magnitude of mass is a powerful test of the valid-
ity of the underlying physics. Statistical and systematic uncertainties 
contribute at the same level to all measurements, except for κµ, which 
still is dominated by the statistical uncertainty.

In extensions of the SM with new particles, the loop-induced pro-
cesses may receive additional contributions. A more general fit for 
deviations in the Higgs boson couplings can then be defined by intro-
ducing additional modifiers for the effective coupling of the Higgs 
boson to gluons (κg), photons (κγ) and Zγ (κZγ). The results for this fit 
are shown in Fig. 4 (left). Coupling modifiers are probed at a level of 
uncertainty of 10%, except for κb and κµ (about 20%) and κZγ (about 
40%), and all measured values are compatible with the SM expectations, 
to within 1.5 s.d. These measurements correspond to an increase in 
precision by a factor of about five compared with what was possible 
with the discovery dataset. Figure 4 (right) and Extended Data Fig. 8 
(left) illustrate the evolution of several κ measurements and their 
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uncertainties using the dataset: at the time of discovery ( July 2012)2,3; 
for the full Run 1 (end of 2012)35; for results presented in this paper; and 
expected to be accumulated by the end of the HL-LHC running69, cor-
responding to = 3, 000 fb−1L . The statistical uncertainties have been 
scaled by 1/ L, the experimental systematic ones by L1/  where pos-
sible, or fixed at values suggested in ref. 69, whereas the theoretical 
uncertainties have been halved.

A sizeable improvement is expected after HL-LHC operation. The 
H → µµ measurements were not available for the first two datasets owing 
to the lack of sensitivity. The evolution of several signal-strength meas-
urements µ are shown in Extended Data Fig. 7.

If new particles exist with masses smaller than mH, other decay chan-
nels may be open. Examples of such decays could be into new neutral 
long-lived particles or into dark-matter particles, neither leaving a 
trace in the CMS detector. We refer to these as ‘invisible’ Higgs boson 
decays, which could be inferred from the presence of large pT

miss in the 
direction of the Higgs boson momentum. The events are selected based 
on other particles accompanying the Higgs boson. Dedicated searches 
for such decays70–72 yielded < 0.16Inv.B  at 95% CL, where Inv.B  is the 
branching fraction to invisible decays.

Results from the search for Higgs boson pair 
production
The cross-section for Higgs boson pair production in the SM is 
extremely small, thus escaping detection at the LHC so far. The results of 
the search are therefore expressed as an upper limit on the production 
cross-section. Figure 5 (left) shows the expected and observed limits 
on Higgs boson pair production, expressed as ratios with respect to the 
SM expectation, in searches using the different final states and their 
combination. With the current dataset, and combining data from all 
currently studied modes and channels, the Higgs boson pair produc-
tion cross-section is found to be less than 3.4 times the SM expecta-
tion at 95% CL. Figure 5 (right) shows the evolution of the limits from 
the three most sensitive modes and the overall combination for: the 
first comprehensive set of measurements using early LHC Run 2 data 
(35.9 fb−1)73, the present measurements using the full LHC Run 2 data 
(138 fb−1) and the projections for the HL-LHC (3,000 fb−1)69. The HL-LHC 

projections are also expressed as limits, assuming that there is no Higgs 
boson pair production. The fact that the combined limit is expected to 
be below unity shows that the sensitivity is sufficient to establish the 
existence of the SM HH production.

Figure 6 presents the expected and observed experimental limits 
on the HH production cross-section as functions of the Higgs boson 
self-interaction coupling modifier κλ and the quartic VVHH coupling 
modifier κ2V. Cross-section values above the solid black lines are 
experimentally excluded at 95% CL. The red lines show the predicted 
cross-sections as functions of κλ or κ2V, which exhibit a characteristic 
dip in the vicinity of the SM values (κ = 1) owing to the destructive inter-
ference of the contributing production amplitudes, as highlighted in 
‘Higgs boson pair production’. The experimental limits on the Higgs 
boson pair production cross-section (black lines) also show a strong 
dependence on the assumed values of κ. This is because the interfer-
ence between different subprocesses, besides changing the expected 
cross-sections, also changes the differential kinematic properties of 
the two Higgs bosons, which in turn affects strongly the efficiency for 
detecting signal events. With the current dataset, we can ascertain at 
the 95% CL that the Higgs boson self-interaction coupling modifier κλ 
is in the range of −1.24 to 6.49, whereas the quartic κ2V coupling modi-
fier is in the range of 0.67 to 1.38. Figure 6 (right) shows that κ2V = 0 is 
excluded, with a significance of 6.6 s.d., establishing the existence of 
the quartic coupling VVHH depicted in Fig. 1n.

Current knowledge and future prospects
The discovery of the Higgs boson in 2012 completed the particle con-
tent of the SM of elementary particle physics, a theory that explains 
visible matter and its interactions in exquisite detail. The completion 
of the SM spanned 60 years of theoretical and experimental work. In 
the ten years following the discovery, great progress has been made 
in painting a clearer portrait of the Higgs boson.

In this paper, the CMS Collaboration reports the most up-to-date 
combination of results on the properties of the Higgs boson, based on 
data corresponding to an L of up to 138 fb−1, recorded at 13 TeV. Many 
of its properties have been determined with accuracies better than 
10%. All measurements made so far are found to be consistent with the 

–6 –4 –2 0 2 4 6 8 10
10

102

103

95
%

 C
L 

lim
it 

on
V(

pp
 →

 H
H

) f
b

Excluded Excluded

Observed          Median expected
Theory prediction 68% CL expected

    95% CL expected 

CMS 138 fb–1 (13 TeV)

–2 –1 0 1 2 3 4
1

10

102

103

Excluded Excluded

Observed          Median expected
Theory prediction 68% CL expected

95% CL expected

CMS 138 fb–1 (13 TeV)

Nλ

Nt = N2V = NV = 1

95
%

 C
L 

lim
it 

on
 V

(p
p 

→
 H

H
) f

b

Nλ = Nt = NV = 1

N2V

Fig. 6 | Limits on the Higgs boson self-interaction and quartic coupling. 
Combined expected and observed 95% CL upper limits on the HH production 
cross-section for different values of κλ (left) and κ2V (right), assuming the SM 
values for the modifiers of Higgs boson couplings to top quarks and vector 
bosons. The green and yellow bands represent the 1-s.d. and 2-s.d. extensions 

beyond the expected limit, respectively; the red solid line (band) shows the 
theoretical prediction for the HH production cross-section (its 1-s.d. 
uncertainty). The areas to the left and to the right of the hatched regions are 
excluded at the 95% CL.

Combination

95% CL  limit on 𝜎HH/𝜎SMHH 2.4(2.9) obs.(exp.)  

95% CL  limit on  ∈ [−0.6; +6.6]kλ
ATLAS 

CMS

“silver”  
bullets

Higgs boson production modes

a)

κt,b

g

g

H

t,b

t,b

t,b

b)

κV

q

q′

V

V
H

q

q′

c)

κV

q

q′

H

V

V

d)

κt,b

g

g

H
t,b

t,b

t,b

t,b

e)

κt

q

b

q′

W
t

t

H

f)

κW

q

b

q′

W

W

t

H

Higgs boson decay channels

g)

κV

H

V

V

h)

κf

H

f

f

i)

κW

H

γ,Z

γ

W

W

W

j)

κt,b

H

γ,Z

γ

t,b

t,b

t,b

Higgs boson pair production

k)

κt,b

κλ

g

g

t,b

t,b

t,b

H

H

H

l)

κt,b

κt,b

g

g

t,b t,b

t,b

t,b

H

H

m)

κV κλ

q

q′

q

q′

V

V H

H

n)

κ2V

q

q′

q

q′

V

V H

H

o)

κV

κV

q

q′

V

V
V

q

q′

H

H

ATLAS: ATLAS-CONF-2022-050 CMS: Nature 607, 60-68 (2022)  



2022 LHC Days in Split - Roberto Salerno - 

Putting all together : HH production

35

Not a single “golden” channel but various 
contributions to the overall sensitivity  

Combinations are key⇒

Combination

95% CL  limit on 𝜎HH/𝜎SMHH 3.4(2.5) obs.(exp.)  

95% CL  limit on  ∈ [−1.24; +6.49]kλ
CMS

ATLAS

“silver”  
bullets

Higgs boson production modes

a)

κt,b

g

g

H

t,b

t,b

t,b

b)

κV

q

q′

V

V
H

q

q′

c)

κV

q

q′

H

V

V

d)

κt,b

g

g

H
t,b

t,b

t,b

t,b

e)

κt

q

b

q′

W
t

t

H

f)

κW

q

b

q′

W

W

t

H

Higgs boson decay channels

g)

κV

H

V

V

h)

κf

H

f

f

i)

κW

H

γ,Z

γ

W

W

W

j)

κt,b

H

γ,Z

γ

t,b

t,b

t,b

Higgs boson pair production

k)

κt,b

κλ

g

g

t,b

t,b

t,b

H

H

H

l)

κt,b

κt,b

g

g

t,b t,b

t,b

t,b

H

H

m)

κV κλ

q

q′

q

q′

V

V H

H

n)

κ2V

q

q′

q

q′

V

V H

H

o)

κV

κV

q

q′

V

V
V

q

q′

H

H

ATLAS: ATLAS-CONF-2022-050 CMS: Nature 607, 60-68 (2022)  ATLAS: ATLAS-CONF-2022-050 CMS: Nature 607, 60-68 (2022)  



2022 LHC Days in Split - Roberto Salerno - 

Putting all together : VVHH interaction

36

 is excluded, with a significance of 6.6 
s.d. assuming all other couplings to be SM
k2V = 0

2− 1− 0 1 2 3 4
2Vκ

1

10

210

310

 H
H 

(in
cl.

)) 
/ f

b
→

(p
p 

σ
95

%
 C

L 
lim

it 
on

 

Excluded Excluded

Observed          Median expected
Theory prediction 68% expected    
                       95% expected    

CMS 

 = 1Vκ = tκ = λκ

 (13 TeV)-1138 fb

Higgs boson production modes

a)

κt,b

g

g

H

t,b

t,b

t,b

b)

κV

q

q′

V

V
H

q

q′

c)

κV

q

q′

H

V

V

d)

κt,b

g

g

H
t,b

t,b

t,b

t,b

e)

κt

q

b

q′

W
t

t

H

f)

κW

q

b

q′

W

W

t

H

Higgs boson decay channels

g)

κV

H

V

V

h)

κf

H

f

f

i)

κW

H

γ,Z

γ

W

W

W

j)

κt,b

H

γ,Z

γ

t,b

t,b

t,b

Higgs boson pair production

k)

κt,b

κλ

g

g

t,b

t,b

t,b

H

H

H

l)

κt,b

κt,b

g

g

t,b t,b

t,b

t,b

H

H

m)

κV κλ

q

q′

q

q′

V

V H

H

n)

κ2V

q

q′

q

q′

V

V H

H

o)

κV

κV

q

q′

V

V
V

q

q′

H

H

Constrained in the  and  plane kV k2V

ATLAS: ATLAS-CONF-2022-050 CMS: Nature 607, 60-68 (2022)  



2022 LHC Days in Split - Roberto Salerno - 

Putting all together : VVHH interaction

37

 is excluded, with a significance of 6.6 
s.d. assuming all other couplings to be SM
k2V = 0

2− 1− 0 1 2 3 4
2Vκ

1

10

210

310

 H
H 

(in
cl.

)) 
/ f

b
→

(p
p 

σ
95

%
 C

L 
lim

it 
on

 

Excluded Excluded

Observed          Median expected
Theory prediction 68% expected    
                       95% expected    

CMS 

 = 1Vκ = tκ = λκ

 (13 TeV)-1138 fb

Higgs boson production modes

a)

κt,b

g

g

H

t,b

t,b

t,b

b)

κV

q

q′

V

V
H

q

q′

c)

κV

q

q′

H

V

V

d)

κt,b

g

g

H
t,b

t,b

t,b

t,b

e)

κt

q

b

q′

W
t

t

H

f)

κW

q

b

q′

W

W

t

H

Higgs boson decay channels

g)

κV

H

V

V

h)

κf

H

f

f

i)

κW

H

γ,Z

γ

W

W

W

j)

κt,b

H

γ,Z

γ

t,b

t,b

t,b

Higgs boson pair production

k)

κt,b

κλ

g

g

t,b

t,b

t,b

H

H

H

l)

κt,b

κt,b

g

g

t,b t,b

t,b

t,b

H

H

m)

κV κλ

q

q′

q

q′

V

V H

H

n)

κ2V

q

q′

q

q′

V

V H

H

o)

κV

κV

q

q′

V

V
V

q

q′

H

H

Constrained in the  and  plane kV k2V

Key role of (HH→bbbb) boosted searches and ML for H→bb decay ID
Establishing the existence of the quartic coupling VVHH 

ATLAS: ATLAS-CONF-2022-050 CMS: Nature 607, 60-68 (2022)  



2022 LHC Days in Split - Roberto Salerno - 

Putting all together : VVHH interaction

38

 is excluded, with a significance of 6.6 
s.d. assuming all other couplings to be SM
k2V = 0

2− 1− 0 1 2 3 4
2Vκ

1

10

210

310

 H
H 

(in
cl.

)) 
/ f

b
→

(p
p 

σ
95

%
 C

L 
lim

it 
on

 

Excluded Excluded

Observed          Median expected
Theory prediction 68% expected    
                       95% expected    

CMS 

 = 1Vκ = tκ = λκ

 (13 TeV)-1138 fb

Higgs boson production modes

a)

κt,b

g

g

H

t,b

t,b

t,b

b)

κV

q

q′

V

V
H

q

q′

c)

κV

q

q′

H

V

V

d)

κt,b

g

g

H
t,b

t,b

t,b

t,b

e)

κt

q

b

q′

W
t

t

H

f)

κW

q

b

q′

W

W

t

H

Higgs boson decay channels

g)

κV

H

V

V

h)

κf

H

f

f

i)

κW

H

γ,Z

γ

W

W

W

j)

κt,b

H

γ,Z

γ

t,b

t,b

t,b

Higgs boson pair production

k)

κt,b

κλ

g

g

t,b

t,b

t,b

H

H

H

l)

κt,b

κt,b

g

g

t,b t,b

t,b

t,b

H

H

m)

κV κλ

q

q′

q

q′

V

V H

H

n)

κ2V

q

q′

q

q′

V

V H

H

o)

κV

κV

q

q′

V

V
V

q

q′

H

H

Constrained in the  and  plane kV k2V

Key role of (HH→bbbb) boosted searches and ML for H→bb decay ID

1−10

1

10

210

310

410

Ev
en

ts
 / 

bi
n

Data QCD

 = 0)2VκHH ( +jetstt

Bkgd. unc.

CMS
VBF cat.

 (13 TeV)-1138 fb

LP MP HP

800-1200
1200-1600

>1600
800-1200

1200-1600
>1600

>800
 [GeV]HHm

0.0
0.5
1.0
1.5
2.0

D
at

a 
/ p

re
d.

The distributions of the invariant mass of 
the HH system after a background-only fit 
to the data, for the VBF categories of the 
HH→bbbb  channel

CMS: arXiv:2205.06667

Establishing the existence of the quartic coupling VVHH 



2022 LHC Days in Split - Roberto Salerno - 

The future : HL-LHC and beyond 

39

Nature | Vol 607 | 7 July 2022 | 65

where σ is the production cross-section and B is the branching fraction. 
Perfect agreement with SM expectations would yield all µ equal to one.

A first test of compatibility is performed by fitting all data from pro-
duction modes and decay channels with a common signal-strength 
parameter, µ. At the time of discovery, the common µ was found 
to be 0.87 ± 0.23. The new combination of all the Run 2 data yields 
µ = 1.002 ± 0.057, in excellent agreement with the SM expectation. 
The uncertainties in the new measurement correspond to an improve-
ment by a factor of 4.5 in precision compared with what was achieved 
at the time of discovery. At present, the theoretical uncertainties in the 
signal prediction, and the experimental statistical and the systematic 
uncertainties separately contribute at a similar level, and they are 0.036, 
0.029 and 0.033, respectively.

Relaxing the assumption of a common signal-strength parameter, 
and introducing different µi and µf, our measurements are shown in 
Fig. 2. The production modes ggH, VBF, WH, ZH and ttH are all observed 
with a significance of 5 s.d. or larger.

The κ framework for coupling modifiers
BSM physics is expected to affect the production modes and decay 
channels in a correlated way if they are governed by similar interac-
tions. Any modification in the interaction between the Higgs boson 
and, for example, the W bosons and top quarks would affect not only 
the H → WW (Fig. 1g) or H → γγ (Fig. 1i,j) decay rates but also the pro-
duction cross-section for the ggH (Fig. 1a), WH (Fig. 1c) and VBF (Fig. 1b) 
modes. To probe such deviations from the predictions of the SM, the 
κ framework38 is used. The quantities, such as σi, Γ f and ΓH, computed 
from the corresponding SM predictions, are scaled by κi

2, as indicated 
by the vertex labels in Fig. 1. As an example, for the decay H → γγ pro-
ceeding via the loop processes of Fig. 1i,j, the branching fraction is 
proportional to κ γ

2 or κ κ(1.26 − 0.26 )W t
2. In the SM, all κ values are equal 

to one.

A first such fit to Higgs boson couplings introduces two parameters, 
κV and κf, scaling the Higgs boson couplings to massive gauge bosons 
and to fermions, respectively. With the limited dataset available at the 
time of discovery, such a fit provided first indications for the existence 
of both kinds of coupling. The sensitivity with the present data is much 
improved, and both coupling modifiers are measured to be in agree-
ment, within an uncertainty of 10%, with the predictions from the SM, 
as shown in Fig. 3 (left).

A second fit is performed to extract the coupling modifiers κ for the 
heavy gauge bosons (κW and κZ) and the fermions probed in the present 
analyses (κt, κb, κτ and κµ). Predictions for processes that in the SM occur 
via loops of intermediate virtual particles, for example, Higgs boson 
production via ggH, or Higgs boson decay to a pair of gluons, photons 
or Zγ, are computed in terms of the κi above. The result is shown in 
Fig. 3 (right), as a function of the mass of the probed particles. The 
remarkable agreement with the predictions of the BEH mechanism 
over three orders of magnitude of mass is a powerful test of the valid-
ity of the underlying physics. Statistical and systematic uncertainties 
contribute at the same level to all measurements, except for κµ, which 
still is dominated by the statistical uncertainty.

In extensions of the SM with new particles, the loop-induced pro-
cesses may receive additional contributions. A more general fit for 
deviations in the Higgs boson couplings can then be defined by intro-
ducing additional modifiers for the effective coupling of the Higgs 
boson to gluons (κg), photons (κγ) and Zγ (κZγ). The results for this fit 
are shown in Fig. 4 (left). Coupling modifiers are probed at a level of 
uncertainty of 10%, except for κb and κµ (about 20%) and κZγ (about 
40%), and all measured values are compatible with the SM expectations, 
to within 1.5 s.d. These measurements correspond to an increase in 
precision by a factor of about five compared with what was possible 
with the discovery dataset. Figure 4 (right) and Extended Data Fig. 8 
(left) illustrate the evolution of several κ measurements and their 
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Fig. 5 | Limits on the production of Higgs boson pairs and their time 
evolution. Left: the expected and observed limits on the ratio of experimentally 
estimated production cross-section and the expectation from the SM (σTheory) in 
searches using different final states and their combination. The search modes 
are ordered, from upper to lower, by their expected sensitivities from the least 

to the most sensitive. The overall combination of all searches is shown by the 
lowest entry. Right: expected and observed limits on HH production in 
different datasets: early LHC Run 2 data (35.9 fb−1), present results using full 
LHC Run 2 data (138 fb−1) and projections for the HL-LHC (3,000 fb−1).
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Figure 11. Sensitivity at 68% probability on the Higgs cubic self-coupling at the various FCs. All values reported correspond
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result for LHeC nor HE-LHeC, and only results with Method (1) for FCC-eh.

improve the precision by about two orders of magnitude, to a 1-2%. For the strange quarks the constraints are about 5-10⇥
the SM value while for the first generation it ranges between 100-600⇥ the SM value. For the latter, future colliders could
improve the limits obtained at the HL-LHC by about a factor of two. For HL-LHC, HE-LHC and LHeC, the determination of
BRunt relies on assuming kV  1. For kg , kZg and kµ the lepton colliders do not significantly improve the precision compared
to HL-LHC but the higher energy hadron colliders, HE-LHC and FCChh, achieve improvements of factor of 2-3 and 5-10,
respectively, in these couplings.

For the electron Yukawa coupling, the current limit ke < 611 [78] is based on the direct search for H ! e+e�. A preliminary
study at the FCC-ee [79] has assessed the reach of a dedicated run at

p
s = mH . At this energy the cross section for e+e� ! H

is 1.64 fb, which reduces to 0.3 with an energy spread equal to the SM Higgs width. According to the study, with 2 ab�1 per
year achievable with an energy spread of 6 MeV, a significance of 0.4 standard deviations could be achieved, equivalent to an
upper limit of 2.5 times the SM value, while the SM sensitivity would be reached in a five year run.

While the limits quoted on kc from hadron colliders (see Table 13) have been obtained indirectly, we mention that progress
in inclusive direct searches for H ! cc̄ at the LHC has been reported from ATLAS together with a projection for the HL-LHC.

Table 13. Upper bounds on the ki for u, d, s and c (at hadron colliders) at 95% CL, obtained from the upper bounds on BRunt
in the kappa-3 scenario.

HL-LHC +LHeC +HE-LHC +ILC500 +CLIC3000 +CEPC +FCC-ee240 +FCC-ee/eh/hh
ku 560. 320. 430. 330. 430. 290. 310. 280.
kd 260. 150. 200. 160. 200. 140. 140. 130.
ks 13. 7.3 9.9 7.5 9.9 6.7 7. 6.4
kc 1.2 0.87 measured directly
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unmatched precision over the next ≥30 years
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We face a period of unprecedented possibilities in particle physics.  
With the Higgs boson discovery new conceptual questions are defined.  
A fundamental scalar? A self-interacting particle? A Yukawa force-carrier?  …  

The answers will be all profoundly interesting, whether or not they are in agreement with SM 
predictions. 

There is an on-going broad programme of HH searches and impressive results have been 
already published using LHC Run2 data: 

SM : each experiment achieve 2-3 ⨉ σSM 
self-coupling :  constrained to approx [-1, 6] 

VVHH interaction : absence of VVHH excluded at >6σ 

We are poised to make substantial progress to measure the Higgs boson self-interaction 
throughout the lifetime of LHC and HL-LHC.

kλ

Conclusions

40



2022 LHC Days in Split - Roberto Salerno - 

Conclusions

41

We face a period of unprecedented possibilities in particle physics.  
With the Higgs boson discovery new conceptual questions are defined.  
A fundamental scalar? A self-interacting particle? A Yukawa force-carrier?  …  

The answers will be all profoundly interesting, whether or not they are in agreement with SM 
predictions. 

There is an on-going broad programme of HH searches and impressive results have been 
already published using LHC Run2 data: 

SM : each experiment achieve 2-3 ⨉ σSM 
self-coupling :  constrained to approx [-1, 6] 

VVHH interaction : absence of VVHH excluded at >6σ 

We are poised to make substantial progress to measure the Higgs boson self-interaction 
throughout the lifetime of LHC and HL-LHC.

kλ

A self-interacting particle? 


