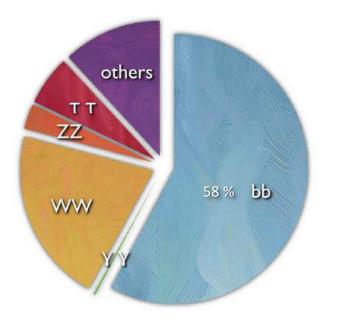
VH(bb) Simplified template cross section measurements with the CMS experiment

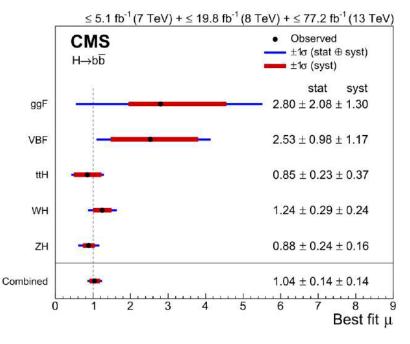
Saswat Mishra On behalf of the CMS collaboration

at LHC days in Split, 2022

B

Supported by:

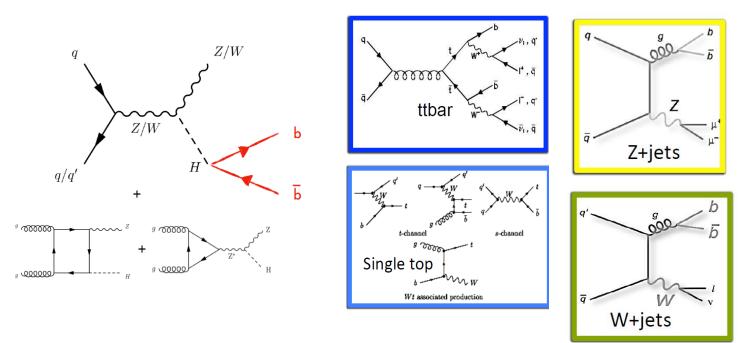


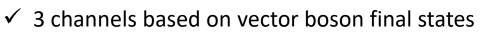


Introduction

- ✓ $H \rightarrow b\bar{b}$ is the dominant decay mode with a branching fraction of 58% (<u>Phys. Rev. Lett. 121 (2018) 12</u>)
 - Observed by the CMS experiment in 2018 with observed (expected) significance of 5.6 (5.5)
- \checkmark VH \rightarrow bb process provides highest sensitivity among all Higgs production modes
 - Effective in reducing multi-jet background events
 - Ability to use lepton and MET (Missing Transverse Energy) triggers from the Vector boson
 - W/Z produced generally back-to-back w.r.t Higgs

 $H \rightarrow b \overline{b}$ observation via all higgs production modes


$VH \rightarrow b\bar{b} process$

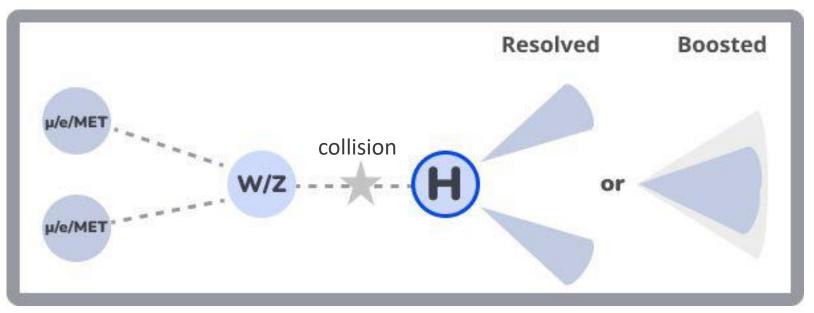


Vo

signal process

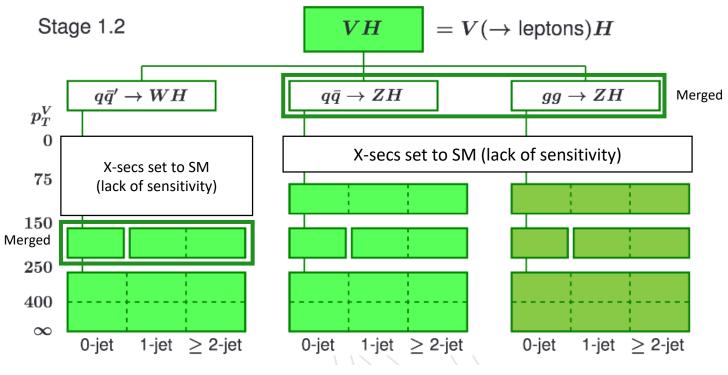
Major Backgrounds

- 0-lepton (Z $\rightarrow \nu\nu$), 1-lepton (W $\rightarrow l\nu$), 2-lepton(Z $\rightarrow l\bar{l}$)
- ✓ Different kinds of background dominate in different channels:
 - tt, W+Jets and Z+Jets in 0-lepton
 - tt and W+jets in 1-lepton
 - DY+jets in 2-lepton


S. Mishra, Insitute Rudjer Boskovic

<u>Higgs Topology</u>

- ✓ With higher Lorentz boost ($p_T V > 250$ GeV), angular separation between pair of b-jets reduces to form a single jet cone of large R
- ✓ Dedicated boosted analysis for Higgs decays resulting in two merged b jets clustered into a single large cone jet
 - Both resolved and boosted analyses are combined to maximize sensitivity
- ✓ 2 different jet clustering algorithms are used:
 - Normal resolved jets are clustered using Anti-Kt algorithm with a radius of 0.4 (AK4 jets)
 - Large cone jets (Fat jets) are clustered with a radius of 0.8 with same algorithm (AK8 jets)
- ✓ b-tagging algorithms are used to distinguish b-jets from c/light flavored jets:
 - Resolved b-jets are tagged using the DeepCSV algorithm
 - Boosted fat jets are tagged using the DeepAK8 algorithm

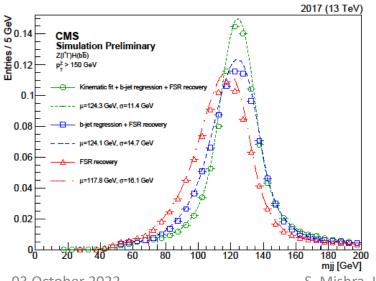


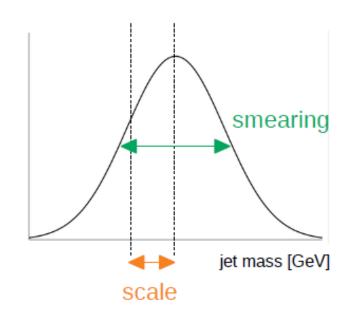
STXS Framework

- ✓ Simplified Template Cross-Section (STXS) framework is used for fiducial cross-section measurements
 - Measure cross-section in mutually exclusive phase space regions
 - Reduction of theoretical uncertainties
 - Possibility to combine ATLAS and CMS measurements easily
 - Cross-section measured in bins of $p_T V$ adopted by STXS (stage 1.2) categorization (below)

arXiv:1610.07922, arXiv:1605.04692

S. Mishra, Insitute Rudjer Boskovic


Improvement in resolution of jet parameters

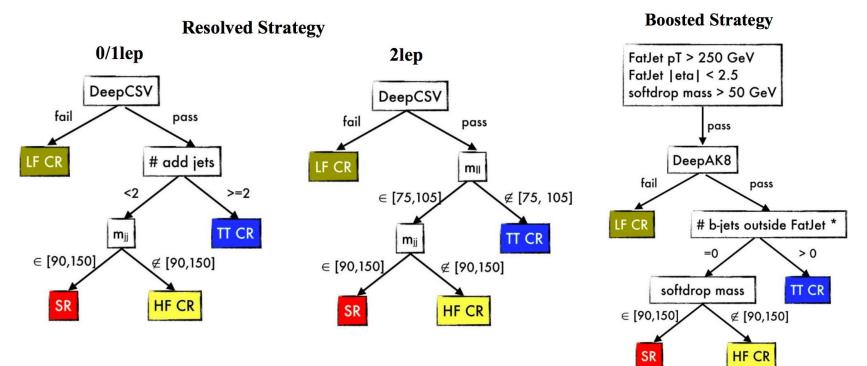


Dedicated b-jet energy regression \checkmark

(Comput. and Soft. for Big Sci. 4, 10 (2020))

- **DNN** based regression ٠
- Energy correction to account for escaping ٠ neutrino from semi-leptonic decay
- Improve the detector response ٠
- **Dedicated Jet smearing and scaling** \checkmark correction
 - fit uses 2-jet event topology in which the jet resolution can be measured by the jet system balance against the Z in the transverse plane

- **Kinematic fit in 2-lepton**
 - Possible in 2-lepton due to better resolution of lepton momenta than jets and absence of intrinsic MET
 - Fit leptons and jets within uncertainties using the constraints:

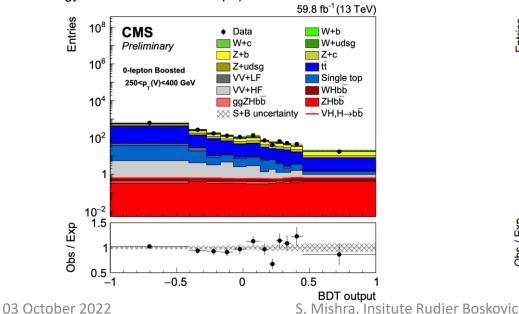

 $m(II) = m(Z) \& p_T(total) = 0$

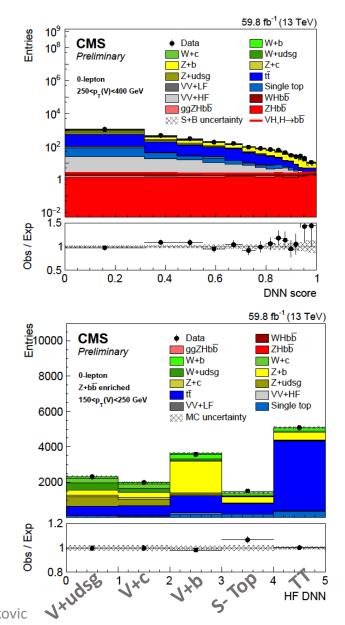
Analysis selection & strategy

- ✓ 3 lepton channels based on vector boson decay, split in STXS bins
- ✓ 3 control regions (CRs) enriched in main backgrounds: V+LF, V+HF and TT
 - Split into low (2-lepton channel), medium and high $p_T V$ bins
- \checkmark Overlap between resolved and boosted events optimized to ensure maximum sensitivity
 - Most relevant for high $p_T V$ bins
- ✓ Total: 51 control regions, 30 signal regions per year \rightarrow 243 regions for Full Run 2 !!!
- ✓ Simultaneous maximum likelihood fit of SR+CR using MVA output score in SR and V+HF regions
 - Dedicated process scale factors to constrain major backgrounds in their respective control regions

S. Mishra, Insitute Rudjer Boskovic

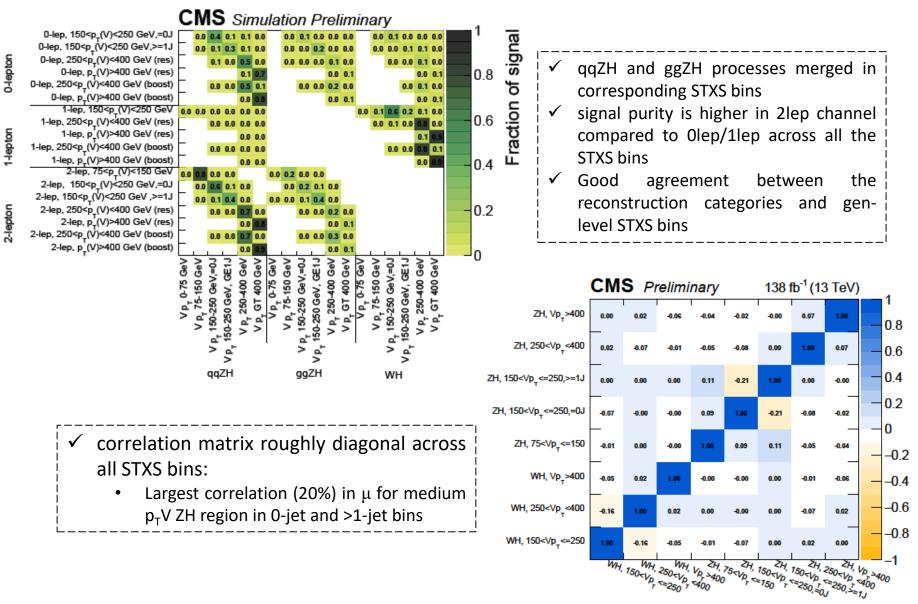
Multivariate methods

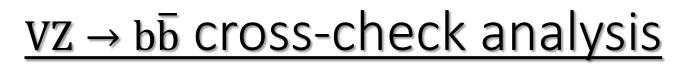


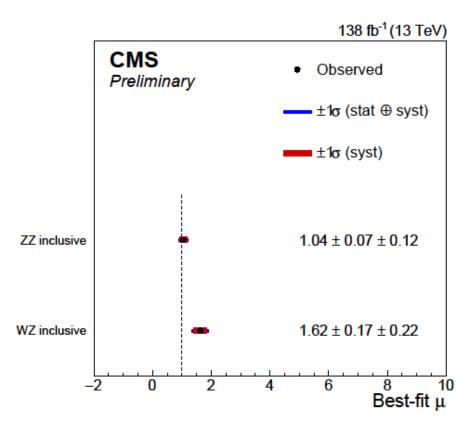

DNN based discriminant for resolved analysis

- Input features: channel-dependent high-level features(e.g. dijet properties, vector boson kinematics)
- SR: binary signal vs. background classification (binning in signal region optimized for sufficient and equal contribution of signal in each bin)
- HF CR (0/1 lepton): multi-classification into five classes (V+udsg, V+c, V+b, single top, tt)

BDT-based discriminant for boosted analysis


- Input features: Fat-Jet information (softdrop mass, DeepAK8 bbVsLight output, pT), reconstructed vector boson properties, resolved features for overlap events
- SR: binary signal vs. background classification (same binning strategy as resolved DNN shape)

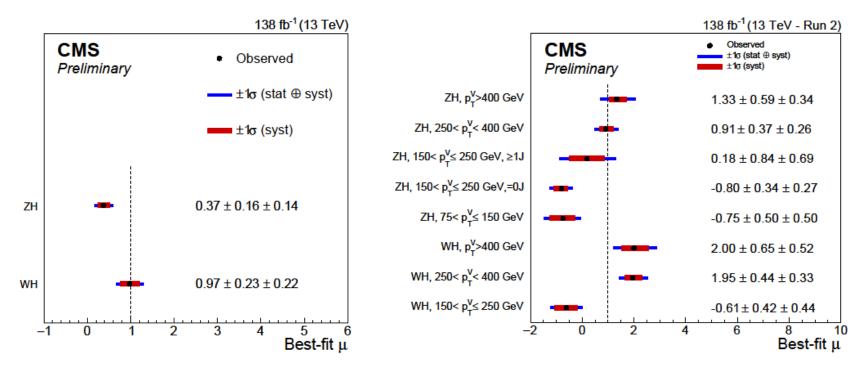

Signal Composition


CMS

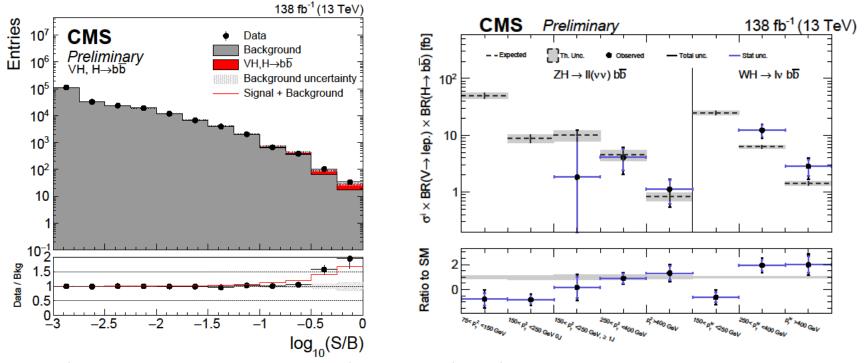
- \checkmark Cross check analysis targeting VZ $\rightarrow b \bar{b}$ process as standard candle to validate VHbb analysis
 - Similar signal topology but much higher production cross section than VH $\rightarrow b\bar{b}$ (~110 times higher)
 - Mass window altered to match Z boson peak instead of Higgs peak
 - Dedicated MVAs trained in corresponding regions similar to VHbb analysis
- ✓ Inclusive μ =1.16±0.13 corresponding to 9.6 σ (8.9 σ) observed (expected) significance

Systematic Uncertainties

	$\Delta \mu$	significant theory corrections
Background (theory)	+0.067 - 0.064	on background and signal
Signal (theory)	+0.082 - 0.060	dominant source of
MC stats.	+0.092 -0.093	uncertainty: MC statistics
Sim. modelling	+0.070 -0.066*	
b tagging	+0.059 - 0.041	modeling of V+jets
Jet energy resolution	+0.045 - 0.057	backgrounds:reweighting of LO samples
Luminosity	+0.041 - 0.034	in 2016
Jet energy scale	+0.029 - 0.036	 ΔR(bb) reweighting of
LeptonID	+0.016 - 0.002	NLO samples 2017/2018
Trigger(MET)	+0.001 - 0.001	b tagging uncertainties for
		resolved and boosted tagger


- ratios of variation/nominal are symmetrized and smoothed for all JES, JER, b-regression uncertainties and the uncertainty assigned to the pile-up reweighting
- **correlated** uncertainties: theoretical uncertainties (PDF, scale, cross sections, branching ratio, ...) and experimental uncertainties (JES, JER, pile-up reweighting)
- **uncorrelated** uncertainties: b tagging, regression scaling and smearing, category migration uncertainties, background normalization scale factors

- $\checkmark ~~\mu$ extracted from binned maximum likelihood fit for each STXS bin
- ✓ Inclusive Run 2 signal strength $\mu = 0.58^{+0.19}_{-0.18}$ [± 0.15 (stat) ± 0.12(syst)]
 - Corresponding Observed (expected) significance: 3.3σ (5.2σ)
- Per-channel compatibility with SM is 0.4% (2.9 σ)
- ✓ Compatibility between Olep and 2lep against inclusive ZH measurement around 20%



- After the discovery and subsequent observation of the Higgs boson decays into 5 different final states (γγ, ZZ, WW, ττ, bb) in Run 2 LHC has delivered a wealth of data that permits experiments to enter the era of Higgs precision measurements
- ✓ Presented an overview of CMS measurement of the VHbb cross section in the context of the STXS framework using the full Run 2 data (138 fb⁻¹)
 - Currently in process of collaboration wide review [CDS]

<u>Back Up</u>

Physics Objects

<u>Leptons</u>

Electrons:

- MVA based ID
- 1-lepton: WP90 with rel. Iso. 0.15
- 2-lepton: WP80 with rel. Iso. 0.12

Muons:

- 1-lepton: tight cut based ID with rel. Iso. 0.06
- 2-lepton: loose ID with rel. Iso. 0.25

Missing transverse energy (MET):

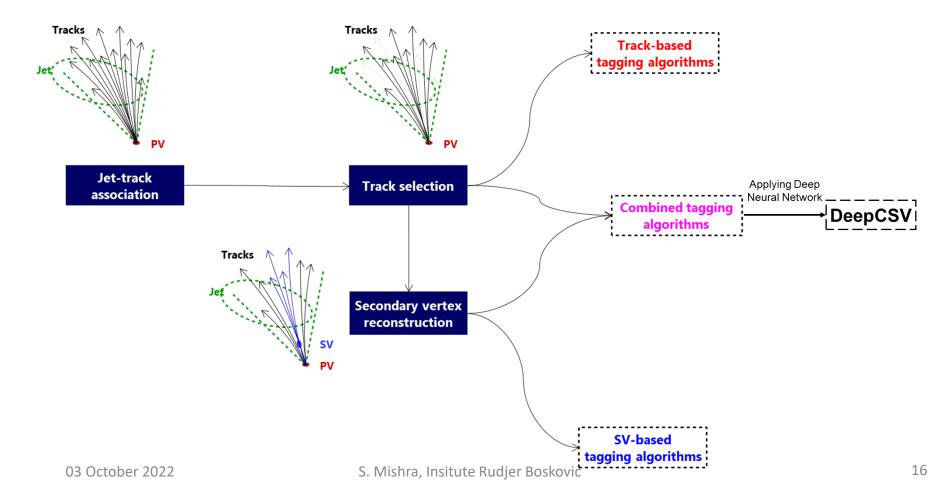
- pf MET is used which is defined as, pf MET = $-\sum_{p_T} \rightarrow \sum_{p_T}$
- Correction applied in x-y plane

<u>Jets</u>

Resolved:

- AK4 CHS, JEC/JER applied
- b-jet energy regression
- calibrated and apply smearing to MC
- tight jet ID, tight PU jet ID
- DeepCSV b-tagger

Boosted:

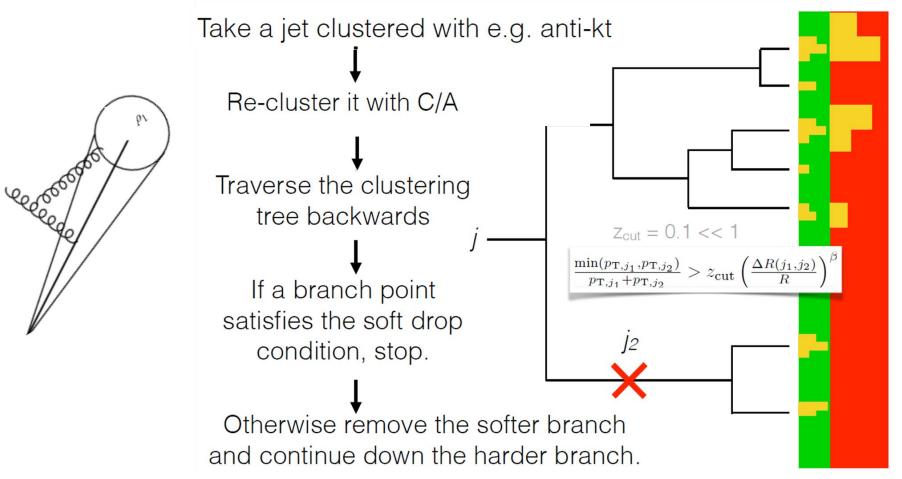

- AK8 CHS, JEC/JER applied
- PUPPI soft-drop mass
- DeepAK8 b-tagger bbVsLight output
- No geometric overlap with selected leptons
- p_T >250 GeV

DeepCSV algorithm

- Combined Secondary Vertex version 2(CSVv2) algorithm exploits both track information and the secondary vertex information of jets to tag bjets.
- DeepCSV uses deep neural network on same algorithm for accuracy in tagging b jets (4% more efficient)

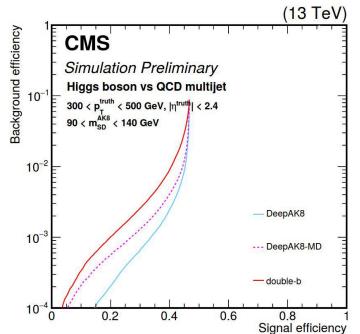
DeepAK8 algorithm

- Deep Neural Network based algorithm exploiting properties of fat jets (AK8 jets)
- Multi-class classifier for t/W/Z/H tagging
- Categories subdivided based on decay modes (e.g., Z→bb, Z→cc, Z→qq)
- Scores can be aggregated for many purposes, e.g., bb vs cc vs light tagging
- Directly uses jet constituents (secondary vertices/ particles information from jets)



Soft drop is a jet grooming algorithm

Removes soft and wide angle radiation from a jet


Resolved b-tagging

- DeepCSV (Deep Combined Secondary Vertex) is a DNN based b-tagging algorithm
- Continuous discriminator output values for b-jets vs jets of different flavors
- Scale-Factors derived for various working points based on mistag efficiency
- The DeepCSV score is very important variable for,
 - ✓ selecting b-jets in an event
 - ✓ Applying cuts for selecting signal events
 - ✓ Usage in multi-variate trainings for signal vs background classification

Boosted b-tagging

- DeepAK8 (Deep Anti-Kt R=0.8) algorithm is used for identifying fat jets of bigger radius of 0.8
- Multiple output classes (bb vs. light output node is
- used)
- Significant improvement with respect to double-B algorithm(usage of a DNN and low-level information)
- Output decorrelated from the soft-drop mass
- Efficiency measurement for gg->bb process used for signal

WP Name	Mistag efficiency	CSVv2	CMVA	DeepCSV
Loose (2018)	10%	n/a	n/a	0.1241
Medium(2018)	1%	n/a	n/a	0.4184
Tight (2018)	0.1%	n/a	n/a	0.7527
Loose (2017)	10%	0.5803	n/a	0.1522
Medium(2017)	1%	0.8838	n/a	0.4941
Tight (2017)	0.1%	0.9693	n/a	0.8001
Loose (2016)	10%	0.5426	-0.5884	0.2219
Medium(2016)	1%	0.8484	0.4432	0.6324
Tight (2016)	0.1%	0.9535	0.9432	0.8958

- LO corrected to NLO in bins of $\Delta \eta$ (bb) used for 2016,
- Inconsistent generation of LO V+jets for 2017 and 2018
- Using NLO V+jets samples MG5_aMCatNLO w/ FXFX merging in 2017 and 2018 :
 - Mismodeling ($\Delta R(bb) < 1.0$)
 - Reweight V+Jets to data in LF CRs with $\Delta R(bb)$
 - Derived per lepton channel and pT(V) bin and extrapolated to HF & SR V+Jets
 - Added systematic uncertainty (low impact in fit)
 - Similar to VH(cc) analysis
 - Mismodeling (DeepCSV < loose WP):
 - 2D reweighting (leading and sub-leading b-tag) derived in LF CRs with ΔR(bb)>1.0
 - Extrapolated to ΔR(bb)<1.0 LF CRs
 - Other regions not affected due to b-tag selection
 - Applied first, before $\Delta R(bb)$ reweighting

Resolved Selection

0-lepton

Variable	SR	Z + b jets	Z + light jets	tī
Common selection:			2	
$min(pfMET, H_T^{miss})$	> 100	-11-	-//-	-//-
$p_{\rm T}^{\rm miss}$	> 170	-//-	-//-	-//-
p_{T}^{j1}	> 60	-//-	-11-	-//-
$p_{\mathrm{T}}^{j_2}$	> 35	-//-	-//-	-//-
$p_{\rm T}({\rm jj})$	> 120	-//-	-//-	-//-
$\Delta \phi(Z,H)$	> 2.0	>-//-	-//-	-//-
Different between SR and CRs:		\sim		
N _{aj}	≤ 1	≤1	≤ 1	≥ 2
M(jj)	€[90-150]	∉[90-150]	-	-
btag _{max}	> medium	> medium	< medium	> medium
$\Delta \phi$ (pfMET,trkMET)	< 0.5	< 0.5	< 0.5	-
$\min \Delta \phi(\text{pfMET}, J)$	-	-	-	$< \pi/2$

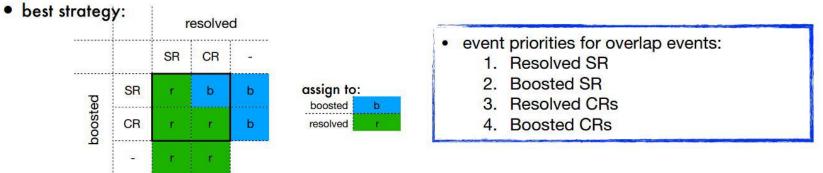
Variable	SR	Z + b jets	Z + light jets	tī
btag _{max}	>medium	>medium	<loose< td=""><td>>tight</td></loose<>	>tight
btag _{min}	>loose	>loose	<loose< td=""><td>>loose</td></loose<>	>loose
M(V)	[75,105]	[85,97]	[75,105]	[10,75] and <120
M(jj)	[90,150]	∉[90,150]	[90,150]	-
$\vec{p}_{\rm T}^{\rm miss}$		<60	-	-
$\Delta \phi(H,V)$		> 2.5	> 2.5	-

2-lepton

Variable	SR	W + b jets	W + light jets	tī
Common selection:				
$p_{\rm T}(jj)$	> 100	-//-	-//-	-//-
$p_{\mathrm{T}}(V)$	> 150	-//-	-//-	-//-
$N_{ m lep}$	< 1	-//-	-//-	-//-
p_{T}^{j1} p_{T}^{j2}	> 25	-//-	-//-	-//-
$p_{\rm T}^{j2}$	> 25	-//-	-//-	-//-
$\Delta \phi(\text{lep, pfMET})$	< 2	-//-	-//-	-//-
Difference between SR and CRs:				
btag _{max}	>medium	>medium	[loose-medium]	>tight
btag _{min}	>loose	-	-	-
M(jj)	[90,150]	[150,250] and <90	<250	< 250
N _{ai}	< 2	< 2	-	>1
$\sigma(\text{pfMET})$	-	> 2	> 2	-
$\Delta \phi(H,V)$	< 2.5	-	-	-

1-lepton

Boosted Selection


0-lepton				
Variable	SR	Z + b jets	Z + light jets	tŦ
DeepAK8 (bbVsLight)	> 0.8	> 0.8	< 0.8	> 0.8
M(jj)	∈[90,150]	∉[90,150]	> 50	> 50
N_{al}	= 0	= 0	= 0	> 0
N _{aj}	= 0	= 0	= 0	>1
1-lepton				
Variable	SR	W + b jets	W + light jets	tŦ
DeepAK8 (bbVsLight)	> 0.8	> 0.8	< 0.8	> 0.8
M(jj)	∈[90,150]	∉[90,150]	> 50	> 50
N_{al}	= 0	= 0	= 0	> 0
N _{aj}	= 0	= 0	= 0	>1
2-lepton				
Variable	SR	Z + b jets	Z + light jets	tŦ
DeepAK8 (bbVsLight)	> 0.8	> 0.8	< 0.8	> 0.8
M(jj)	∈[90,150]	∉[90,150]	> 50	> 50
M(V)	∈[75,105]	∈[75,105]	∈[75,105]	∉[90,150]

<u>Overlap region</u>

- some events pass selection for boosted as well as for resolved analysis (=overlap)
- have to assign to either of them for combination
- 4 different overlap strategies tested
 - compared expected sensitivity for WH>250, ZH>250 STXS signal strengths

• adding the boosted analysis lowers uncertainties on WH>250, ZH>250 STXS signal strengths

Signal Extraction

• Signal extracted using binned maximum likelihood fit to the MVA score distributions

Expected events in a bin $(r) = \mu . S(\theta) + B(\theta)$

binned liklihood: $L(n|\mu, \theta) = \prod_{i \in bins} P_{possion}(n_i|\mu, S(\theta) + B(\theta))$

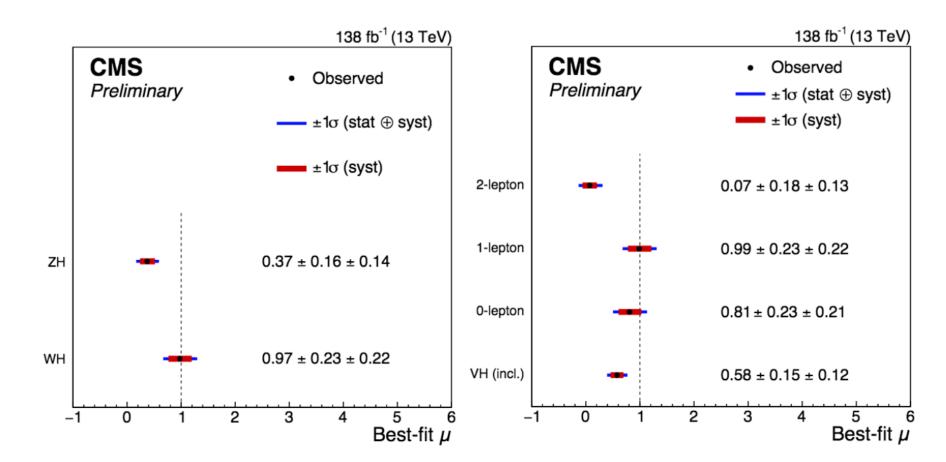
 Background processes are constrained by control region fits which are performed simultaneously with the signal region fit.

03 October 2022

DNN variables in resolved SR

Variable	Description	0-lepton	1-lepton	2-leptor
m(jj)	Dijet invariant mass	√	~	~
pT(jj)	Dijet transverse momentum	~	✓	\checkmark
pT(MET)	MET transverse momentum	✓	✓	\checkmark
V(mt)	Transverse mass of vector boson		✓	
V(pt)	Transverse momentum of vector boson		~	1
pT(jj)/pT(V)	Ratio of momentum of vector boson and Higgs boson		11	~
$\Delta \phi(V,H)$	Azimuthal angle between vector boson and dijet directions	1	V	~
btag _{max}	Working point b-tagging score of leading jet	11	$\sqrt{\lambda}$	~
btag _{min}	Working point b-tagging score of sub-leading jet		$\langle \checkmark \rangle$	~
$\Delta \eta(jj)$	Pseudorapidity difference between leading and sub-leading jet	~	$\langle \rangle$	~
$\Delta \phi(jj)$	Azimuthal angle between leading and sub-leading jet	✓	\checkmark	1
$pT_{max}(j_1,j_2)$	Maximum transverse momentum of jet between leading and sub-leading jet	1	~ \	$\langle \rangle$
$pT(j_2)$	Maximum transverse momentum of jet between leading and sub-leading jet	\sim	 Image: A second s	
SA5	Number of soft-track jets with momentum greater than 5 GeV	1	✓	13
N _{aj}	Number of additional jets	~	√	
$btag_{max}(add)$	Maximum btagging discriminant score among additional jets	 ✓ 		
pT _{max} (add)	Maximum transverse momentum among additional jets	$\backslash \checkmark$		
$\Delta \phi(jet, MET)$	Azimuthal angle between additional jet and MET	$\mathbf{\nabla}$		
$\substack{\Delta\phi(lep,MET)\\M_t}$	Azimuthal angle between lepton and MET Reconstructed top quark mass		\$ \$	
$pT(j_1)$	Transverse momentum of leading jet			1
M _t	Transverse momentum of sub-leading jet			~
m(V)	Reconstructed vector boson mass			~
$\Delta R(V, H)$	Angular separation between vector boson and Higgs boson			~
$\Delta R(V,H)$	Angular separation between leading and sub-leading jets			~
$\sigma(m(jj))$	Resolution of dijet invariant mass			~
Netober 12022	Number of recoil jets S. Mishra, Institute Rudjer Boskovic			1

BDT training in boosted region is carried by using both boosted and resolved features of events:


- Kinematic information and deepAK8 score for exclusively boosted events
- Resolved kinematic information for events passing overlap category

Exclusive Boosted Variables	Resolved variables for Overlap events		
Missing Transverse Momentum (MET)	Di jet transverse momentum		
Deep AK8 binned WP	<u></u> Δφ(Η, ΜΕΤ)		
Fat jet transverse momenta	Di jet Mass		
Fat jet Mass	AK4 Jet with highest momenta		
Fat jet pseudo rapidity	Ű		
∆φ(V, FatJet)	$\Delta \phi$ (leading AK4 Jet, MET)		
	# of additional AK4 Jets		
	∆¢(AK4 Jet 1, AK4 Jet 2)		
	∆η(AK4 Jet 1, AK4 Jet 2)		
	Leading AK4 Jet momenta		
	Sub leading AK4 Jet momenta		

Per channel scans

- Jackknife resampling is a non-parametric method of estimating uncertainty on a parameter by removing partitions from total event dataset.
- we divide the 2017 dataset combined from 2 analyses into g equal-sized orthogonal partitions
- for each partition *i*:
 - Remove that set of events from each analyses datacards
 - Redo both the fits to get μ_i
- jackknife estimate of the variance on $\Delta \mu$ is calculated from the variance of $\Delta \mu_i$:

$$var_{I}(\Delta \mu) = \frac{g-1}{g} \sum (\Delta \mu_{(i)} - \overline{\Delta \mu_{d}})^{2} = \frac{(g-1)^{2}}{g} var(\Delta \mu_{(i)})$$

• Compute disagreement on $\Delta \mu$ ($\sigma_{\Delta \mu}$)

$$\sigma_{\Delta\mu} = \frac{\overline{\Delta\mu}}{\sqrt{var(\Delta\mu)}} = \frac{\overline{\Delta\mu}}{\frac{(g-1)}{\sqrt{g}} \times std. \, dev_{\Delta\mu}}$$

$$\sigma_{\Delta\mu} = 2\sigma$$

correlation $\rho \sim 0.5$

for our purpose we are using 1000 equal sized partitions